Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Relative regular closeness and π-valuations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Yu. L. Ershov, “Fields with decidable theory,”Dokl. Akad. Nauk SSSR,174, No. 1, 19–20 (1967).

  2. 2.

    Yu. L. Ershov, “Rational points over henselian fields,”Algebra Logika, 6, No. 3, 39–49 (1967).

  3. 3.

    Yu. L. Ershov, “Regularly closed fields,”Dokl. Akad. Nauk SSSR,251, No. 4, 783–785 (1980).

  4. 4.

    Yu. L. Ershov, “Algorithmic problems in field theory (positive aspects),” in:Handbook of Mathematical Logic, III [in Russian], Nauka, Moscow (1982), pp. 269–353.

  5. 5.

    Yu. L. Ershov, “Multiply valuation fields,”Usp. Mat. Nauk,37, No. 3, 55–93 (1982).

  6. 6.

    Yu. L. Ershov, “Absolute irreducibility and properties of henselizations,”Algebra Logika,21, No. 5, 530–536 (1982).

  7. 7.

    Yu. L. Ershov, “Totally real field extensions,”Dokl. Akad. Nauk SSSR,263, No. 5, 1047–1049 (1982).

  8. 8.

    Yu. L. Ershov, “Regularlyr-closed fields,”Dokl. Akad. Nauk SSSR,266, No. 3, 538–540 (1982).

  9. 9.

    Yu. L. Ershov, “Boolean families of valuation rings,”Algebra Logika,31, No. 3, 274–294 (1992).

  10. 10.

    C. C. Chang and H. J. Keisler,Model Theory, 2nd edn., North Holland (1977).

  11. 11.

    U. M. Künzi, “Decidable theories of pseudop-adic closed fields,”Algebra Logika,28, No. 6, 643–669 (1989).

  12. 12.

    J. Ax, “Solving diophantine problems modulo every prime,”Ann. Math.,85, 161–183 (1967).

  13. 13.

    J. Ax, “The elementary theory of finite fields,”Ann. Math.,88, 239–271 (1968).

  14. 14.

    G. Cherlin, L. Van den Dries, and A. Macintyre, “The elementary theory of regularly closed fields,” Preprint (1982).

  15. 15.

    M. Freid and M. Jarden, Field Arithmetic, Springer-Verlag (1986).

  16. 16.

    C. Grob, “Die Entscheidbarkeit der Theorie der maximalen pseudop-adisch algeschlossenen Körper,”Konstanzer Dissertationen,202 (1987).

  17. 17.

    D. Haran and M. Jarden, “The absolute Galois group of a pseudop-adically closed fields,”J. Reine Ang. Math.,383, 147–206 (1988).

  18. 18.

    B. Heinemann, and A. Prestel, “Fields regularly closed with respect to finitely many valuations and orderings,”Can. Math. Soc. Conf. Proc.,4, 297–336 (1984).

  19. 19.

    V. Jarden, “The elementary theory ofω-free Ax fields,”Inv. Math.,38, 187–206 (1976).

  20. 20.

    M. Jarden, “Algebraic realization ofp-adically projective groups,”Comp. Math.,79, 21–62 (1991).

  21. 21.

    M. Jarden and U. Keihne, “The elementary theory of algebraic fields of finite corank,”Inv. Math.,30, 275–294 (1975).

  22. 22.

    U. M. Künzi, “Corps multiplement pseudo-p-adiquement clos,”C. R. Acad. Sc. Paris,309, No. 1, 205–208 (1989).

  23. 23.

    U. M. Künzi, “Multiply pseudo-p-adically closed fields,”Proc. Int. Conf. Algebra dedic. A. I. Malcev (Cont. Math.,131, Part 2), 463–468 (1992).

  24. 24.

    A. Prestel, “Pseudo real closed fields,”Lect. Notes Math., No. 872, 127–156 (1981).

  25. 25.

    A. Prestel and P. Roquette, “Formallyp-adic fields,”Lect. Notes Math., No. 1050 (1984).

  26. 26.

    A. Schinzel, “Reducibility of polynomials in several variables II,”Pac. J. Math.,118, 531–563 (1985).

Download references

Additional information

Translated fromAlgebra i Logika, Vol. 31, No. 6, pp. 592–623, November-December, 1992.

Translated by O. Bessonova

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ershov, Y.L. Relative regular closeness and π-valuations. Algebr Logic 31, 342–360 (1992). https://doi.org/10.1007/BF02261728

Download citation

Keywords

  • Mathematical Logic