Concentration gradients for monoamine metabolites in lumbar cerebrospinal fluid

  • K. Blennow
  • A. Wallin
  • C. G. Gottfries
  • J. -E. Månsson
  • L. Svennerholm
Full Papers


Concentration gradients in lumbar cerebrospinal fluid (CSF) for the monoamine metabolites homovanillic acid (HVA), 5-hydroxy-indoleacetic acid (5-HIAA) and 4-hydroxy-3-methoxyphenylglycol (HMPG) were studied in 9 healthy controls and 47 neuropsychiatric patients without diseases causing disturbed CSF circulation. In a serial sampling of the first 24 ml of CSF, steep concentration gradients between the first (0–4 th ml) and last (21th–24th ml) portions of CSF were found for HVA (99±59% increase; p<0.001) and 5-HIAA (88±54% increase; p<0.001), while the concentration gradient was slight for HMPG (11±7% increase; p<0.001). The existence of marked concentration gradients for the monoamine metabolites HVA and 5-HIAA gives further evidence for an active transport system for these metabolites and indicates that the lumbar CSF-HVA and 5-HIAA levels reflect the dopamine and serotonin metabolism in the brain. Moreover, the existence of pronounced concentration gradients for HVA and 5-HIAA levels reflect the dopamine and serotonin metabolism in the brain. Moreover, the existence of pronounced concentration gradients for HVA and 5-HIAA stresses the importance of making analyses on a standardized volume of CSF.


Homovanillic acid (HVA) 5-hydroxy-indoleacetic acid (5-HIAA) 4-hydroxy-3-methoxyphenylglycol (HMGP) cerebrospinal fluid (CSF) concentration gradients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adèr JP, Aizenstein ML, Postema F, Korf J (1979) Origin of free 3-methoxy-4-hydroxyphenylethyleneglycol in rat cerebrospinal fluid. J Neural Transm 46: 279–290CrossRefPubMedGoogle Scholar
  2. Andersen O, Johansson B, Svennerholm L (1981) Monoamine metabolites in successive samples of spinal fluid. Acta Neurol Scand 63: 247–254PubMedGoogle Scholar
  3. Aschcroft GW, Dow RC, Moir ATB (1968) The active transport of 5-hydroxyindol-3-ylacetic acid and 3-methoxy-4-hydroxyphenylacetic acid from a recirculatory perfusion system of the cerebral ventricles of the unanaesthetized dog. J Physiol 199: 397–425PubMedGoogle Scholar
  4. Bartholini G, Pletscher A, Tissot R (1966) On the origin of homovanillic acid in the cerebrospinal fluid. Experientia 22: 609–610CrossRefPubMedGoogle Scholar
  5. Bertilsson L, Åsberg, M, Lantto O, Scalia-Tomba GP, Träskman-Bendz L, Tybring G (1982) Gradients of monoamine metabolites and cortisol in cerebrospinal fluid of psychiatric patients and healthy controls. Psychiatry Res 6: 77–83CrossRefPubMedGoogle Scholar
  6. Blennow K, Wallin A, Gottfries CG, Karlsson I, Månsson JE, Skoog I, Svennerholm L, Wikkelsö C (1991a) Cerebrospinal fluid monoamine metabolites in 114 healthy individuals 18–88 years of age (submitted)Google Scholar
  7. Blennow K, Wallin A, Gottfries CG, Lekman A, Karlsson I, Svennerholm L (1991b) Significance of reduced lumbar CSF levels of HVA and 5-HIAA in Alzheimer's disease et al. Neurobiol Aging 13: 107–113CrossRefGoogle Scholar
  8. Blennow K, Rybo E, Wallin A, Gottfries CG, Svennerholm L (1991c) Cerebrospinal fluid cytology in Alzheimer's disease. Dementia 2: 25–29Google Scholar
  9. Blennow K, Fredman P, Wallin A, Gottfries CG, Långström G, Svennerholm L (1992) Protein analyses in cerebrospinal fluid. I. Influence of concentration gradients for proteins on CSF/S albumin ratio. Eur Neurol (in press)Google Scholar
  10. Cutler N, Kay A, Ågren H, Linnoila M, Potter W (1988) Cerebrospinal fluid monoamine metabolites levels in 32 healthy men aged 19–77 years. Brain Dysfunct 1: 192–196Google Scholar
  11. Degrell I, Nagy E (1990) Concentration gradients for HVA, 5-HIAA, ascorbic acid, and uric acid in cerebrospinal fluid. Biol Psychiatry 27: 891–896CrossRefPubMedGoogle Scholar
  12. DiChiro G (1964) Movement of the cerebrospinal fluid in human beings Nature 204: 290–291PubMedGoogle Scholar
  13. Ebert M, Kartzinel R, Cowdry R, Goodwin F (1980) Cerebrospinal fluid amine metabolites and the probenicide test. In: Wood JH (ed) Neurobiology of cerebrospinal fluid. Plenum Press, New York, pp 97–112Google Scholar
  14. Eccleston D, Ashcroft GW, Moir ATB, Parker-Rhodes A, Lutz W, O'Mahoney DP (1968) A comparison of 5-hydroxyindoles in various regions of dog brain and cerebrospinal fluid. J Neurochem 15: 947–957PubMedGoogle Scholar
  15. Garelis E, Sourkes TL (1973) Sites of origin in the central nervous system of monoamine metabolites measured in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry 36: 625–629PubMedGoogle Scholar
  16. Gateless D, Stanley M, Träskman-Bendz L, Gilroy J (1984) The influence of the lying and sitting positions on the gradients of 5-HIAA and HVA in lumbar cerebrospinal fluid. Biol Psychiatry 19: 1585–1589PubMedGoogle Scholar
  17. Gjerris A, Werdelin L, Gjerris F, Sörensen PS, Rafaelsen OJ, Alling C (1987) CSF-amine metabolites in depression, dementia and in controls. Acta Psychiatr Scand 75: 619–628PubMedGoogle Scholar
  18. Gordon E, Perlow M, Oliver J, Ebert M, Kopin I (1975) Origins of catecholamine metabolites in monkey cerebrospinal fluid. J Neurochem 25: 347–349PubMedGoogle Scholar
  19. Gottfries CG, Gottfries I, Johansson V, et al (1971) Acid monoamine metabolites in human cerebrospinal fluid and their relations to age and sex. Neuropharmacology 10: 665–672CrossRefPubMedGoogle Scholar
  20. Jakupcevic M, Lackovic Z, Stefoski D, Bulat M (1977) Nonhomogeneous distribution of 5-hydroxyindoleacetic acid and homovanillic acid in the lumbar cerebrospinal fluid of man. J Neurol Sci 31: 165–171CrossRefPubMedGoogle Scholar
  21. Johansson B, Roos BE (1975) Concentrations of monoamine metabolites in human lumbar and cisternal cerebrospinal fluid. Acta Neurol Scand 52: 137–144PubMedGoogle Scholar
  22. Kopin IJ, Gordon EK, Jimerson DC, Polinsky RJ (1983) Relation between plasma and cerebrospinal fluid levels of 3-methoxy-4-hydroxyphenylglycol. Science 219: 73–75Google Scholar
  23. Post RM, Goodwin EK, Gordon E (1973) Amine metabolism in human cerebro spinal fluid: effects of cord transection and spinal fluid block. Science 179: 879–899Google Scholar
  24. Scheinin M (1985) Monoamine metabolites in human cerebrospinal fluid: indicators of neuronal activity? Med Biol 63: 1–17PubMedGoogle Scholar
  25. Siever L, Kraemer H, Sack R, Angwin P, Berger P, Zarcone V, Barchas J, Brodie KH (1975) Gradients of biogenic amine metabolites in cerebrospinal fluid. Dis Nerv Syst 36: 13–16PubMedGoogle Scholar
  26. Sjöquist B, Lindström B, Änggård E (1975) Mass fragmentographic determination of 4-hydroxy-3-methoxyphenylglycol (HMPG) in urine, cerebrospinal fluid, plasma and tissue using a deuterium-labelled internal standard. J Chromatogr, 105: 309–316CrossRefPubMedGoogle Scholar
  27. Sjöström R, Ekstedt J, Änggård E (1975) Concentration gradients of monoamine metabolites in human cerebrospinal fluid. J Neurol Neurosurg Psychiatry 38: 666–668PubMedGoogle Scholar
  28. Sourkes TL (1973) On the origin of homovanillic acid (HVA) in the cerebrospinal fluid. J Neural Transm 34: 153–157CrossRefPubMedGoogle Scholar
  29. Stanley M, Träskman-Bendz L, Dorovini K (1985) Correlations between aminergic metabolites simultaneously obtained from human CSF and brain. Life Sci 37: 1279–1286CrossRefPubMedGoogle Scholar
  30. Swahn C-G, Sandgärde B, Wiesel F-A, Sedvall G (1976) Simultaneous deter-mination of the three major monoamine metabolites in brain tissue and body fluids by a mass fragmentographic method. Psychopharmacology 48: 147–152Google Scholar
  31. Van der Poel FW, van Praag HM, Korf J (1977) Evidence for a probenecid-sensitive transport system of acid monoamine metabolites from the spinal subarachnoid space. Psychopharmacology 52: 35–40CrossRefPubMedGoogle Scholar
  32. Weir RL, Chase TN, Ng LKY, Kopin IJ (1973) 5-hydroxyindoleacetic acid in spinal fluid: relative contribution from brain and spinal cord. Brain Res 52: 409–412CrossRefPubMedGoogle Scholar
  33. Wode-Helgodt B, Sedvall G (1978) Correlations between height of subject and concentrations of monoamine metabolites in the cerebrospinal fluid from psychotic men and women. Commun Psychopharmacol 2: 177–183PubMedGoogle Scholar
  34. Wood JH (1980) Sites of origin and cerebrospinal fluid concentration gradients: neurotransmitters, their precursors and metabolites, and cyclic nucleotides. In: Wood JH (ed) Neurobiology of cerebrospinal fluid. Plenum Press, New York, pp 53–62Google Scholar
  35. Ziegler MG, Wood JH, Lake CR, Kopin IJ (1977) Norepinephrine and 3-methoxy-4-hydroxyphenyl glycol gradients in human cerebrospinal fluid. Am J Psychiatry 134: 565–568PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • K. Blennow
    • 1
  • A. Wallin
    • 1
  • C. G. Gottfries
    • 1
  • J. -E. Månsson
    • 1
  • L. Svennerholm
    • 1
  1. 1.Department of Psychiatry and NeurochemistryUniversity of Göteborg, Mölndal HospitalMölndalSweden

Personalised recommendations