Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Accurate arithmetic results for decimal data on non-decimal computers

Genaue arithmetische Ergebnisse für dezimale Daten auf nicht-dezimalen Computern


Recently, techniques have been devised and implemented which permit the computation of smallest enclosing machine number interval for the exact results of a good number of highly composite operations. These exact results refer, however, to the data as they are represented in the computer. This note shows how the conversion of decimal data into non-decimal representations may be joined with the mathematical operation on the data into one high-accuracy algorithm. Such an algorithm is explicitly presented for the solution of systems of linear equations.


In letzter Zeit wurde eine Methodik entwickelt und implementiert, die die Erzeugung kleinstmöglicher Maschinenzahl-Intervalle für die genauen Ergebnisse verschiedenster vielstufiger mathematischer Operationen gestattet. Diese genauen Ergebnisse beziehen sich jedoch auf die Daten so wie sie im Computer dargestellt sind. In der vorliegenden Note wird gezeigt, wie die Konversion dezimaler Daten in nicht-dezimale Darstellungen mit der mathematischen Operation an den Daten in einen einzigen hoch-genauen Algorithmus zusammengefügt werden kann. Für die Lösung von Systemen linearer Gleichungen wird ein solcher Algorithmus im Detail vorgestellt.

This is a preview of subscription content, log in to check access.


  1. [1]

    Kulisch, U., Miranker, W. L.: Computer Arithmetic in Theory and Practice. New York: Academic Press 1982.

  2. [2]

    High-Accuracy Arithmetic Subroutine Library (ACRITH): General Information Manual. IBM Publication No. GC33-6163-01 (Version 1, Release 2), 1984.

  3. [3]

    High-Accuracy Arithmetic Subroutine Library (ACRITH): Program Description and User's Guide. IBM Publication No. SC 33-6164-01 (Version 1, Release 2), 1984.

  4. [4]

    Stetter, H. J.: Sequential defect correction for high-accuracy floating-point algorithms. In: Numerical Analysis (Proceedings, Dundee 1983). Lecture Notes in Mathematics, vol. 1066, 186–202 (1984).

  5. [5]

    Kaucher, E., Rump, S. M.:E-methods for fixed point equationsf(x)=x. Computing28, 31–42 (1982).

  6. [6]

    Rump, S. M.: Solving nonlinear systems with least significant bit accuracy. Computing29, 183–200 (1982).

Download references

Author information

Additional information

Dedicated to Professor R. Albrecht on the occasion of his 60th birthday

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Auzinger, W., Stetter, H.J. Accurate arithmetic results for decimal data on non-decimal computers. Computing 35, 141–151 (1985).

Download citation


  • Linear Equation
  • Computational Mathematic
  • Exact Result
  • Good Number
  • Mathematical Operation