Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Asynchronous algorithms for poisson's equation with nonlinear boundary conditions

Asynchrone Algorithmen für die Poisson-Gleichung mit nichtlinearen Randbedingungen

  • 42 Accesses

  • 3 Citations


Poisson's equation with nonlinear boundary conditions is discretized with the method of lines to obtain a system of second order differential equations with multi-point boundary conditions. This differential system is converted, using invariant imbedding for each one-dimensional problem, into a fixed point problem and then the asynchronous algorithms are applied.


Die Poisson-Gleichung mit nichtlinearen Randbedingungen wird mittels der Linienmethode diskretisiert und ergibt ein System von gewöhnlichen Differentialgleichungen zweiter Ordnung mit Randbedingungen. Durch invariante Einbettung für jedes eindimensionale Problem wird dieses System in ein Fixpunktproblem verwandelt, auf das dann die asynchronen Algorithmen angewandt werden.

This is a preview of subscription content, log in to check access.


  1. [1]

    Aziz A. K. (ed.): Numerical Solutions of Boundary Value Problems for Ordinary Differential Equations. New York: Academic Press 1975.

  2. [2]

    Baudet, G. M.: Asynchronous iterative methods for multiprocessors. Research Report of the Department of Computer Science, Carnegie-Mellon University, Pittsburg, Pennsylvania, 1976.

  3. [3]

    Baudet, G. M.: The Design and Analysis of Algorithms for Asynchronous Multiprocessors Ph. D. Thesis, Department of Computer Science, Carnegie-Mellon University, Pittsburg, Pennsylvania 1978.

  4. [4]

    Chazan, D., Miranker, W. L.: Chaotic relaxation. Linear Algebra and Appl.2, 199–222 (1969).

  5. [5]

    El Tarazi, M. N.: Sur des algorithmes mixtes par blocs de type Newton-Relaxation chaotique à retards. Co. Ren. Acad. Sci. (Paris), A283, 721–724 (1976).

  6. [6]

    El Tarazi, M. N.: Thèse de Doctorat ès Sciences. Université de Besançon, France, 1981.

  7. [7]

    El Tarazi, M. N.: Some convergence results for asynchronous algorithms. Numer. Math.39, 325–340 (1982).

  8. [8]

    El Tarazi, M. N.: Asynchronous algorithms for solving fixed point problems. XI International Symposium on Mathematical Programming, Bonn, Federal Republic of Germany, 1982.

  9. [9]

    Meyer, G. H.: Initial Value Methods for Boundary Value Problems. Theory and Application of Invariant Imbedding. New York: Academic Press 1973.

  10. [10]

    Meyer, G. H.: An application of the method of lines to multi-dimensional free boundary problems. J. Inst. Math. Appl.20, 317–329 (1977).

  11. [11]

    Meyer, G. H.: The method of lines for Poisson's equation with nonlinear or free boundary conditions. Numer. Math.29, 329–344 (1978).

  12. [12]

    Miellou, J. C.: Itératios chaotiques à retards. Co. Re. Acad. Sci. (Paris)A 278, 957–960 (1974).

  13. [13]

    Miellou, J. C.: Algorithmes de relaxation chaotique à retards. R.A.I.R.O.9, 55–82 (1975).

  14. [14]

    Miellou, J. C.: Méthodes de Jacobi, Gauss-Seidel, sur-(sous) relaxation par blocs, appliquées à une classe de problèmes non linéaires. Co. Re. Acad. Sci. (Paris)A273, 1257–1259 (1971).

  15. [15]

    Miellou, J. C.: Sur une variante de la méthodes de relaxation, appliquée à des problèmes comportant un opérateur somme d'un opérateur différentiable, et d'un opérateur maximal monotone, diagonal. Co. Re. Acad. Sci. (Paris)A275, 1107–1110 (1972).

  16. [16]

    Miranker, W. L.: Parallel methods for solving equations. Mathematics and Computers in Simulation20, 93–101 (1978).

  17. [17]

    Robert, F.: Convergence locale d'itérations chaotiques non linéaires. Co. Re. Acad. Sci. (Paris)A 284, 679–682 (1977).

  18. [18]

    Robert, F., Charnay, M., Musy, F.: Itérations chaotiques série-parallèle pour des équations non linéaires de point fixe. Apl. Mat.20, 1–38 (1975).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anwar, M.N., El Tarazi, M.N. Asynchronous algorithms for poisson's equation with nonlinear boundary conditions. Computing 34, 155–168 (1985). https://doi.org/10.1007/BF02259842

Download citation

AMS Subject Classifications

  • 65 H 10
  • 65 M 20
  • CR: 5.15
  • 5.17