Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Calculation of damage and of force relaxation in amorpho-crystalline polymers

  • 38 Accesses

Abstract

The dynamics of damage and of the relaxing force in amorpho-crystalline polymers under constant strain are calculated using the formulas for the probability of rupture of a deformed polymer molecule and a model representation of amorphous interlayers. The main parameters of the model are the maximum and minimum possible deformations of molecular chains, the energy of rupture activation, the function of the chain length distribution, the temperature, the macroscopic strain, and the relative dimensions of the amorphous interlayer. The conformity of the theoretical model and the association of the relaxation spectrum with the internal molecular and structural characteristics of the material are established.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. G. Adamovich and Yu. S. Urzhumtsev, “Prognostics of long-time strength of polymeric materials. A survey”, Mekh. Kompoz. Mater., No. 4, 694–704 (1979).

  2. 2.

    S. B. Ratner, Mechanical Failure of Plastics as the Process of Destruction of Polymers [in Russian], Moscow (1989).

  3. 3.

    Xia Mengten, Han Wensheng, Ke Fujiu, Bai Yilong, “Statistical mesoscopic damage mechanics and damage condition induced catastrophe”, Lixue Jinzhan. Adv. Mech.,25, No. 1, 1–40 (1995).

  4. 4.

    S. N. Narzullaev and B. N. Narzullaev, “Time dependence of strength of solids”, Zh. Tekh. Fiz.,23, No. 10, 1677–1680 (1953).

  5. 5.

    S. N. Zhurkov and V. E. Korsukov, “Atomic mechanism of rupture of polymers under load”, Fiz. Tverd. Tela,15, No. 7, 2071–2080 (1973).

  6. 6.

    G. M. Bartenev and Yu. S. Zuev, Strength and Rupture of Highly Elastic Materials [in Russian], Khimiya, Moscow, Leningrad (1964).

  7. 7.

    V. R. Regel', A. I. Slutsker, and E. E. Tomashevskii, Kinematic Nature of Strength of Solids [in Russian], Nauka, Moscow (1974).

  8. 8.

    M. G. Zaitsev, “Relationship between micro- and macroparameters of homogeneous fracture in the model of amorpho-crystalline polymers”, Mekh. Kompoz. Mater.,17, No. 6, 1104–1107 (1981).

  9. 9.

    A. I. Gubanov, “Fracture kinetics of polymer fibrils”, Mekh. Kompoz. Mater., No.6, 968–973 (1980).

  10. 10.

    B. G. Mukanova, “Estimation of durability of an oriented polymeric chain upon stress relaxation by the methods of statistical physics”, Mekh. Model. Protsessov Tekh., No. 1, 3–6 (1995).

  11. 11.

    A. A. Askadskii, Deformation of Polymers [in Russian], Khimiya, Moscow (1973).

  12. 12.

    V. I. Vettegren' and I. I. Novak, “Determination of true stresses on interatomic bonds in loaded polymers by the method of infrared spectroscopy”, Fiz. Tverd. Tela,15, No. 5, 1417–1422 (1973).

  13. 13.

    S. N. Zhurkov and V. S. Kuksenko, “Micromechanics of polymer rupture”, Polym. Mech.,10, No. 5, 687–694 (1974).

  14. 14.

    M. N. Bokshitskii, Long-Term Strength of Polymers [in Russian], Khimiya, Moscow (1978).

  15. 15.

    V. M. Vorob'ev, V. I. Vettegren', and I. V. Razumovskaya, “Deformation of interatomic bonds in polymers”, Polym. Mech.,13, No. 5, 660–665 (1977).

  16. 16.

    A. I. Gubanov and V. I. Kosobukin, “Estimation of the length distribution of through polymer chains”, Polym. Mech.,10, No. 5, 794–796 (1974).

  17. 17.

    S. G. Ratner, “On the nature of physicochemical constants determining the serviceability of polymers”, Dokl. AN SSSR,264, No. 5, 1167–1170 (1982).

  18. 18.

    A. F. Kregers and Yu. O. Jansons, “Construction of a single relaxation spectrum for polymers”, Polym. Mech.,13, No. 1, 12–15 (1977).

  19. 19.

    G. M. Bartenev and D. S. Sanditov, Relaxation Processes in Glassy Systems [in Russian], Nauka, Novosibirsk (1986).

Download references

Additional information

Zhambyl Technical Institute of Light and Food Industry, Taraz, Kazakhstan. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 4, pp. 499–508, July–August, 1999.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mukanova, B.G., Junisbekov, O.T. Calculation of damage and of force relaxation in amorpho-crystalline polymers. Mech Compos Mater 35, 339–344 (1999). https://doi.org/10.1007/BF02259723

Download citation

Key words

  • failure
  • polymer
  • Regel's element
  • stress relaxation
  • amorphous interlayer
  • probability of rupture
  • critical damage
  • durability prediction