Journal of Molecular Evolution

, Volume 20, Issue 2, pp 135–146

Divided genomes and intrinsic noise

  • J. Pressing
  • D. C. Reanney
Article
  • 71 Downloads

Summary

Segmental genomes (i.e., genomes in which the genetic information is dispersed between two or more discrete molecules) are abundant in RNA viruses, but virtually absent in DNA viruses. It has been suggested that the division of information in RNA viruses expands the pool of variation available to natural selection by providing for the reassortment of modular RNAs from different genetic sources. This explanation is based on the apparent inability of related RNA molecules to undergo the kinds of physical recombination that generate variation among related DNA molecules. In this paper we propose a radically different hypothesis. Self-replicating RNA genomes have an error rate of about 10−3–10−4 substitutions per base per generation, whereas for DNA genomes the corresponding figure is 10−9–10−11. Thus the level of noise in the RNA copier process is five to eight orders of magnitude higher than that in the DNA process. Since a small module of information has a higher chance of passing undamaged through a noisy channel than does a large one, the division of RNA viral information among separate small units increases its overall chances of survival. The selective advantage of genome segmentation is most easily modelled for modular RNAs wrapped up in separate viral coats. If modular RNAs are brought together in a common viral coat, segmentation is advantageous only when interactions among the modular RNAs are selective enought to provide some degree of discrimination against miscopied sequences. This requirement is most clearly met by the reoviruses.

Key words

RNA viruses Divided genomes Copying fidelity Intrinsic selection pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. Pressing
    • 1
  • D. C. Reanney
    • 1
  1. 1.Department of MicrobiologyLa Trobe UniversityBundooraAustralia

Personalised recommendations