Chemistry of Heterocyclic Compounds

, Volume 36, Issue 3, pp 287–300 | Cite as

Synthesis of racemic 1,2,3,4-tetrahydroisoquinolines and their resolution

  • E. Suna
  • P. Trapencieris


1-Aniline-substituted 3,4-dihydroisoquinolines were obtained in various ways using the Bischler-Napieralski reaction. The effect of the protecting group at the aniline nitrogen atom on the course of the reaction has been studied and it was found that the N-phthalyl group was stable under the cyclization conditions. The dihydroisoquinolines were reduced to the racemic 1,2,3,4-tetrahydroisoquinolines which were resolved by crystallization of the diastereomeric tartrates. Two examples of 1,2,3,4-tetrahydroisoquinolines were obtained in optically pure form (>99%ee).


dihydroisoquinolines 1,2,3,4-isoquinolines resolution of isomeric tartrates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. D. Razwadowska,Heterocycles,39, 903 (1944).Google Scholar
  2. 2.
    H. Ott, G. E. Hardtmann, M. Denzer, A. J. Frey, J. H. Gogerty, G. H. Leslie, and J. H. Trapold,J. Med. Chem.,11, 777 (1968).CrossRefPubMedGoogle Scholar
  3. 3.
    K. T. Wanner, H. Beer, G. Höfner, and M. Ludwig,Eur. J. Org. Chem., No. 9, 2019 (1998).CrossRefGoogle Scholar
  4. 4.
    E. Vedejs, N. Lee, and T. Sakata,J. Am. Chem. Soc.,116, 2175 (1994).CrossRefGoogle Scholar
  5. 5.
    E. Vedejs, A. W. Kruger, and E. Suna,J. Org. Chem.,64, 783 (1999).Google Scholar
  6. 6.
    E. Vedejs and A. W. Kruger,J. Org. Chem.,63, 2792 (1998).CrossRefGoogle Scholar
  7. 7.
    D. Barbier, C. Marazano, C. Riche, B. C. Das, and P. Potier,J. Org. Chem.,63, 1767 (1998).CrossRefGoogle Scholar
  8. 8.
    B. Wünsch and S. Nerdinger,Eur. J. Org. Chem., No. 2, 513 (1999).Google Scholar
  9. 9.
    S. Doi, N. Shirai, Y. Sato,J. Chem. Soc., Perkin Trans. I, No. 15, 2217 (1997).Google Scholar
  10. 10.
    L. Carrillo, D. Badia, E. Dominguez, F. Ortega, and I. Tellitu,Tetrahedron: Asymmetry,9, 151 (1998).CrossRefGoogle Scholar
  11. 11.
    S. Nagubandi and G. Fodor,J. Heterocycl. Chem.,17, 1457 (1980).Google Scholar
  12. 12.
    G. Fodor and S. Nagubandi,Tetrahedron,36, 1279 (1980).CrossRefGoogle Scholar
  13. 13.
    T. Sasaki, K. Minamato, and H. Itoh,J. Org. Chem.,43, 2320 (1978).CrossRefGoogle Scholar
  14. 14.
    E. T. McBee and R. A. Sanford,J. Am. Chem. Soc.,72, 1651 (1950).CrossRefGoogle Scholar
  15. 15.
    N. A. Al-Jabar and A. G. Massey,J. Organomet. Chem.,288, 145 (1985).CrossRefGoogle Scholar
  16. 16.
    D. B. Collum,Acc. Chem. Res.,25, 448 (1992).CrossRefGoogle Scholar
  17. 17.
    C. Lee and L. Field,Synthesis, No. 5, 391 (1990).CrossRefGoogle Scholar
  18. 18.
    E. Vedejs, P. Trapencieris, and E. Suna,J. Org. Chem.,64, 6724 (1999).CrossRefPubMedGoogle Scholar
  19. 19.
    G. W. Gribble and P. W. Heald,Synthesis, No. 10, 650 (1975).CrossRefGoogle Scholar
  20. 20.
    P. Newman,Optical Resolution Procedures for Chemical Compounds. Amines and Related Compounds. Riverdale, New York, 1984.Google Scholar
  21. 21.
    H. Ott, US Pat 3297696;Chem. Abstr.,66, 65505 (1967).Google Scholar
  22. 22.
    B. Love,Can. J. Chem.,42, 1488 (1964).Google Scholar
  23. 23.
    G. Palazzo and B. Silvestrini, US Pat 3409668;Chem. Abstr.,70, 37496 (1969).Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers 2000

Authors and Affiliations

  • E. Suna
  • P. Trapencieris

There are no affiliations available

Personalised recommendations