Journal of Biomedical Science

, Volume 8, Issue 1, pp 7–19 | Cite as

Role of glutamatergic and GABAergic systems in alcoholism

  • Kathleen M. Davis
  • Jang-Yen Wu


The pharmacological effects of ethanol are complex and widespread without a well-defined target. Since glutamatergic and GABAergic innervation are both dense and diffuse and account for more than 80% of the neuronal circuitry in the human brain, alterations in glutamatergic and GABAergic function could affect the function of all neurotransmitter systems. Here, we review recent progress in glutamatergic and GABAergic systems with a special focus on their roles in alcohol dependence and alcohol withdrawal-induced seizures. In particular, NMDA-receptors appear to play a central role in alcohol dependence and alcohol-induced neurological disorders. Hence, NMDA receptor antagonists may have multiple functions in treating alcoholism and other addictions and they may become important therapeutics for numerous disorders including epilepsy, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's chorea, anxiety, neurotoxicity, ischemic stroke, and chronic pain. One of the new family of NMDA receptor antagonists, such as DETC-MESO, which regulate the redox site of NMDA receptors, may prove to be the drug of choice for treating alcoholism as well as many neurological diseases.

Key Words

L-Glutamate GABA Alcoholism Glutamate receptors GABA receptors Decarboxylase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abi-Dargham A, Krystal JH, Anjilvel S, Scanley BE, Zoghbi S, Baldwin RM, Rajeevan N, Ellis S, Petrakis IL, Seibyl JP, Charney DS, Laruelle M, Innis RB. Alterations of benzodiazepine receptors in type II alcoholic subjects measured with SPECT and [123I]iomazenil. Am J Psychiatry 155:1550–1555;1998.PubMedGoogle Scholar
  2. 2.
    Addolorato G, Caputo F, Capristo E, Colombo, Gessa GL, Gasbarrini G. Ability of baclofen in reducing alcohol craving and intake: II. Preliminary clinical evidence. Alcohol Clin Exp Res 24:67–71;2000.CrossRefGoogle Scholar
  3. 3.
    Aguayo LG, Pancetti FC. Ethanol modulation of the gamma-aminobutyric acid and glycine-activated Cl current in cultured mouse neurons. J Pharmacol Exp Ther 270:61–69;1994.PubMedGoogle Scholar
  4. 4.
    Allan AM, Burnett D, Harris RA. Ethanol-induced changes in chloride flux are mediated by both GABAA and GABAB receptors. Alcoholism: Clin Exp Res 15:233–237;1991.Google Scholar
  5. 5.
    Anders DL, Blevins T, Sutton G, Swope S, Chandler LJ, Woodward JJ. Fyn tyrosine kinase reduces the ethanol inhibition of recombinant NR1/NR2A but not NR1/NR2B NMDA receptors expressed in HEK 293 cells. J Neurochem 72:1389–1393;1999.CrossRefPubMedGoogle Scholar
  6. 6.
    Anders DL, Blevins T, Smothers CT, Woodward JJ. Reduced ethanol inhibition of N-methyl-D-aspartate receptors by deletion of the NR1 CO domain or overexpression of alpha-actinin-2 proteins. J Biol Chem 275:15019–15024;2000.CrossRefGoogle Scholar
  7. 7.
    Ardent T, Henning D, Gray JA, Marchbanks R. Loss of neurons in the rat basal forebrain cholinergic system after prolonged intake of ethanol. Brain Res Bull 21:563–570;1988.CrossRefPubMedGoogle Scholar
  8. 8.
    Bao J, Nathan B, Hsu CC, Zhang Y, Wu R, Wu JY. Role of protein phosphorylation in the regulation of brain L-glutamate decarboxylase activity. J Biomed Sci 1:237–244;1994.CrossRefPubMedGoogle Scholar
  9. 9.
    Bao J, Cheung WY, Wu JY. Brain L-glutamate decarboxylase: Inhibition by phosphorylation and activation by dephosphorylation. J Biol Chem 270:64640–64647;1995.CrossRefGoogle Scholar
  10. 10.
    Bashir ZI, Alford S, Davies SN, Randall AD, Collingridge GL. Long-term potentiation of NMDA receptor-mediated synaptic transmission in the hippocampus. Nature 349:156–158;1991.PubMedGoogle Scholar
  11. 11.
    Ben-Ari Y, Aniksztejn L, Bregestovski P. Protein kinase C modulation of NMDA currents: An important link for LTP induction. Trends Neurosci 15:333–339;1992.CrossRefPubMedGoogle Scholar
  12. 12.
    Bennett GJ. Update on the neurophysiology of pain transmission and modulation: Focus on the NMDA-receptor. J Pain Symptom Manage 19:S2-S6;2000.CrossRefPubMedGoogle Scholar
  13. 13.
    Beracochea D, Micheau J, Jaffard R. Memory deficits following chronic alcohol consumption in mice: Relationships with hippocampal and cortical cholinergic activities. Pharmacol Biochem Behav 42:749–753;1992.PubMedGoogle Scholar
  14. 14.
    Besson J, Acby F, Kasas A, Fendl A, Lehert P. Combined efficacy of acamprosate and disulfiram for enhancing abstinence of chronic alcoholic patients during a one year post detoxification period. RSA/ISBRA Abstr 74S;1996.Google Scholar
  15. 15.
    Bisaga A, Popic P. In search of a new pharmacological treatment for drug and alcohol addiction: N-methyl-D-aspartate (NMDA) antagonists. Drug Alcohol Depend 59:1–15;2000.CrossRefPubMedGoogle Scholar
  16. 16.
    Bowery N. GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci 10:401–407;1989.PubMedGoogle Scholar
  17. 17.
    Brilliant MH, Szabo G, Katarova Z, Kozak CA, Glaser TM, Greenspan RJ, Housman DE. Sequences homologous to glutamic acid decarboxylase cDNA are present on mouse chromosomes 2 and 10. Genomics 6:115–122;1990.CrossRefPubMedGoogle Scholar
  18. 18.
    Brodie MS, Pesold C, Appel SB. Ethanol directly excites dopaminergic ventral tegmental area reward neurons. Alcohol Clin Exp Res 23:1848–1852;1999.PubMedGoogle Scholar
  19. 19.
    Browning MD, Hoffer BJ, Dunwiddie TV. Alcohol, memory, and molecules. Alcohol Health Res World 16:280–284;1992.Google Scholar
  20. 20.
    Bu DF, Erlander MG, Hitz BC, Tillakaratne NJK, Kaufman DL, Wagner-McPherson CB, Evans GA, Tobin AJ. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA 89:2115–2119;1992.PubMedGoogle Scholar
  21. 21.
    Buck KJ, Metten P, Belknap JK, Crabbe JC. Quantitative trait loci involved in genetic predisposition to acute alcohol withdrawal in mice. J Neurosci 17:3946–3955;1997.PubMedGoogle Scholar
  22. 22.
    Buller AL, Monagahan DT. Pharmacological heterogeneity of NMDA receptors: Characterization of NR1a/NR2D heteromers expressed in Xenopus oocytes. Eur J Pharmacol 320:87–94;1997.CrossRefPubMedGoogle Scholar
  23. 23.
    Bustos G, Abarca J, Forray MI, Gysling K, Bradberry CW, Roth RH. Regulation of excitatory amino acid release by N-methyl-D-aspartate receptors in rat striatum: In vivo microdialysis studies. Brain Res 585:105–115;1992.CrossRefGoogle Scholar
  24. 24.
    Carboni S, Isola R, Gessa GL, Rossetti ZL. Ethanol prevents the glutamate release induced by N-methyl-D-aspartate in the rat striatum. Neurosci Lett 152:133–136;1993.CrossRefPubMedGoogle Scholar
  25. 25.
    Chandler LJ, Sutton G, Norwood D, Sumners C, Crews FT. Chronic ethanol increases N-methyl-D-aspartate-stimulated nitric oxide formation but not receptor density in cultured cortical neurons. Mol Pharmacol 51:733–740;1997.PubMedGoogle Scholar
  26. 26.
    Chandler LJ, Norwood D, Sutton G. Chronic ethanol upregulates NMDA and AMPA, but not kainate receptor subunit proteins in rat primary cortical cultures. 23:363–370;1999.Google Scholar
  27. 27.
    Chapman AG. Glutamate and epilepsy. J Nutr 130:104S3–104S5;2000.Google Scholar
  28. 28.
    Chen L, Huang LYM. Sustained potentiation of NMDA receptor-mediated glutamate responses through activation of protein kinase C by a mu opioid. Neuron 7:319–326;1991.CrossRefPubMedGoogle Scholar
  29. 29.
    Chen N, Luo T, Raymond LA. Subtype-dependence of NMDA receptor channel open probability. J Neurosci 19:6844–6854;1999.PubMedGoogle Scholar
  30. 30.
    Chen X, Michaelis ML, Michaelis EK. Effects of chronic ethanol treatment on the expression of calcium transport carriers and NMDA/glutamate receptor proteins in brain synaptic membranes. J Neurochem 69:1559–1569;1997.PubMedGoogle Scholar
  31. 31.
    Chen X, Moore-Nichols D, Nguyen H, Michaelis EK. Calcium influx through NMDA receptors, chronic receptor inhibition by ethanol and 2-amino-5-phosponopentanoic acid, and receptor protein expression. J Neurochem 72:1969–1980:1999.CrossRefPubMedGoogle Scholar
  32. 32.
    Cheng ATA, Loh WW, Cheng CY, Wang YC, Hsu YPP. Polymorphisms and intron sequences flanking the alternatively spliced 8-amino-acid exon of gamma subunit gene for GABAA receptors. Biochem Biophys Res Commun 238:683–685;1997.CrossRefPubMedGoogle Scholar
  33. 33.
    Ciccocioppo R. The role of serotonin in craving: From basic research to human studies. Alcohol Alcohol 34:244–253;1999.PubMedGoogle Scholar
  34. 34.
    Collingridge GL, Lester RAJ. Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol Rev 40:143–210;1989.Google Scholar
  35. 35.
    Colombo G, Agabio R, Carai MA, Lobina C, Pani M, Reali R, Addolorato G, Gessa GL. Ability of baclofen in reducing alcohol intake and withdrawal severity: I. Preclinical evidence. Alcohol Clin Exp Res 24:58–66;2000.CrossRefPubMedGoogle Scholar
  36. 36.
    Costa ET, Soto EE, Cardoso RA, Olivera DS, Valenzuela CF. Acute effects of ethanol on kainate receptors in cultured hippocampal neurons. Alcohol Clin Exp Res 24:220–225;2000.CrossRefPubMedGoogle Scholar
  37. 37.
    Courtney MJ, Nicholls DG. Interactions between phospholipase C-coupled and N-methyl-D-aspartate receptors in cultured cerebellar granule cells: Protein kinase C mediated inhibition of N-methyl-D-aspartate responses. J Neurochem 59:983–992;1992.PubMedGoogle Scholar
  38. 38.
    Cowen MS, Lawrence AJ. The role of opioiddopamine interactions in the induction and maintenance of ethanol consumption. Prog Neuropsychopharmacol Biol Psychiatry 23:1171–1212;1999.Google Scholar
  39. 39.
    Crews FT, Morrow AL, Criswell H, Breese G. Effects of ethanol on ion channels. Int Rev Neurobiol 39:283–367;1996.PubMedGoogle Scholar
  40. 40.
    Davis KM. Large-scale production and regulation of two human isoforms of glutamic acid decarboxylase; thesis, University of Kansas, Lawrence, 2000.Google Scholar
  41. 41.
    Deupree DL, Tang XW, Yarom M, Dickman E, Kirch RD, Schloss JV, Wu JY. Studies of NMDA and non-NMDA-mediated neurotoxicity in cultured neurons. Neurochem Int 29:255–261;1996.PubMedGoogle Scholar
  42. 42.
    Devaud LL, Smith FD, Grayson DR, Morrow AL. Chronic ethanol consumption differentially alters the expression of γ-aminobutyric acidA receptor subunit mRNAs in rat cerebral cortex: Competitive, quantitative reverse transcriptase-polymerase chain reaction analysis. Mol Pharmacol 48:861–868;1995.PubMedGoogle Scholar
  43. 43.
    Diana M, Pistis M, Muntoni A, Gessa G. Mesolimbic dopaminergic reduction outlasts ethanol withdrawal syndrome: Evidence of protracted abstinence. Neuroscience 71:411–415;1996.PubMedGoogle Scholar
  44. 44.
    Dildy JE, Leslie SW. Ethanol inhibits NMDA-induced increases in intracellular CA2+ in dissociated brain cells. Brain Res 499:383–387;1989.CrossRefPubMedGoogle Scholar
  45. 45.
    Dildy-Mayfield JE, Leslie SW. Mechanism of inhibition of N-methyl-D-aspartate-stimulated increases in free intracellular Ca2+ concentration by ethanol. J Neurochem 56:1536–1543;1991.PubMedGoogle Scholar
  46. 46.
    Dingledine R, Hynes MA, King GL. Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hippocampal slice. J Physiol (Lond) 380:175–189;1986.PubMedGoogle Scholar
  47. 47.
    Dodd PR. GABAA receptors in damaged cerebral cortex areas in human chronic alcoholics. Alcohol Alcohol Suppl 2:187–191;1994.Google Scholar
  48. 48.
    Dunah AW, Yasuda RP, Luo J, Wang Y, Prybylowski KL, Wolfe BB. Biochemical studies of the structure and function of the N-methyl-D-aspartate subtype of glutamate receptors. Mol Neurobiol 19:151–179;1999.CrossRefPubMedGoogle Scholar
  49. 49.
    Dutar P, Nicoll RA. A physiological role for GABAB receptors in the central nervous system. Nature 332:156–158;1988.Google Scholar
  50. 50.
    Ebadi M, Murrin LC, Pfeiffer RF. Hippocampal zinc thionein and pyridoxal phosphate modulate synaptic functions. Ann NY Acad Sci 585:189–201;1990.PubMedGoogle Scholar
  51. 51.
    Eide PK. Wind-up and the NMDA receptor complex from a clinical perspective. Eur J Pain 4:5–15;2000.CrossRefPubMedGoogle Scholar
  52. 52.
    Erlander MG, Tillakaratne NJK, Feldblum S, Patel N, Tobin AJ. Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100;1991.CrossRefPubMedGoogle Scholar
  53. 53.
    Erlander MG, Tobin AJ. The structure and functional heterogeneity of glutamic acid decarboxylase: A review. Neurochem Res 16:215–226;1991.CrossRefPubMedGoogle Scholar
  54. 54.
    Fadda F, Rossetti ZL. Chronic ethanol consumption: From neuroadaptation to neurodegeneration (review). Progr Neurobiol 56:385–431;1998.CrossRefPubMedGoogle Scholar
  55. 55.
    Follesa P, Ticku MK. Chronic ethanol treatment differentially regulates NMDA receptor subunit mRNA expression in rat brain. Brain Res Mol Brain Res 29:99–106;1995.CrossRefPubMedGoogle Scholar
  56. 56.
    Franks NP, Lieb WR. Do general anesthetics act by competitive binding to specific receptors? Nature 310:599–601;1984.CrossRefPubMedGoogle Scholar
  57. 57.
    Freund G, Anderson KJ. Glutamate receptors in the frontal cortex of alcoholics. Alcohol Clin Exp Res 20:1165–1172;1996.PubMedGoogle Scholar
  58. 58.
    Freund G, Anderson KJ. Glutamate receptors in the cingulate cortex, hippocampus, and cerebellar vermis of alcoholics. Alcohol Clin Exp Res 23:1–6;1999.PubMedGoogle Scholar
  59. 59.
    Freund G, Ballinger WE Jr. Decrease of benzodiazepine receptors in frontal cortex of alcoholics. Alcohol 5:275–282;1988.CrossRefPubMedGoogle Scholar
  60. 60.
    Freund G, Ballinger WE Jr. Loss of muscarinic and benzodiazepine neuroreceptors from hippocampus of alcohol abusers. Alcohol 6:23–31;1989.CrossRefPubMedGoogle Scholar
  61. 61.
    Freund G, Ballinger WE Jr. Neuroreceptor changes in the putamen of alcohol abusers. Alcohol Clin Exp Res 13:213–218;1989.PubMedGoogle Scholar
  62. 62.
    Freund G, Ballinger WE Jr. Loss of muscarinic cholinergic receptors from the temporal cortex of alcohol abusers. Metab Brain Dis 4:121–141;1989.PubMedGoogle Scholar
  63. 63.
    Frye GD, Fincher A. Sustained ethanol inhibition of native AMPA receptors on medial septum/diagonal band (MS/DB) neurons. Br J Pharmacol 129:87–94;2000.CrossRefPubMedGoogle Scholar
  64. 64.
    Goebel DJ, Poosch MS. NMDA receptor subunit gene expression in the rat brain: A quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D, NR3A. Brain Res Mol Brain Res 69:164–170;1999.CrossRefPubMedGoogle Scholar
  65. 65.
    Gold BI, Roth RH. Glutamate decarboxylase activity in striatal slices: Characterization of the increase following depolarizartion. J Neurochem 32:883–888;1979.PubMedGoogle Scholar
  66. 66.
    Grant ER, Bacskai BJ, Anegawa NJ, Pleasure DE, Lynch DR. Opposing contributions of NR1 and NR2 to protein kinase C modulation of NMDA receptors. J Neurochem 71:1471–1481;1998.PubMedGoogle Scholar
  67. 67.
    Grant KA, Snell ID, Togawski MA, Thurkauf A, Tabakoff, B. Comparison of the effects of the uncompetitive N-methyl-D-aspartate antagonist (+/-)-5-aminocarbonyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (ADCL) with its structural analogs dizocilipine (MK-801) and carbamazepine on ethanol withdrawal seizures. J Pharmacol Exp Ther 260:1017–1022;1992.PubMedGoogle Scholar
  68. 68.
    Grobin AC, Matthews DB, Devaud LL, Morrow AL. The role of GABA(A) receptors in the acute and chronic effects of ethanol. Psychopharmacology 139:2–19;1998.CrossRefGoogle Scholar
  69. 69.
    Grobin AC, Papadeasb ST, Morrow AL. Regional variations in the effects of chronic ethanol administration on GABA(A) receptor expression: Potential mechanisms. Neurochem Int 37:453–461:2000.CrossRefPubMedGoogle Scholar
  70. 70.
    Gulya K, Grant KA, Valverius P, Hoffman PL, Tabakoff B. Brain regional specificity and time-course of changes in the NMDA receptorionophore complex during ethanol withdrawal. Brain Res 547:129–134;1991.CrossRefPubMedGoogle Scholar
  71. 71.
    Hardingham, GE, Chawla S, Cruzalegui FH, Bading H. Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron 22:789–798;1999.CrossRefPubMedGoogle Scholar
  72. 72.
    Harris RA, McQuilkin SJ, Paylor R, Abeliovich A, Tonegawa S, Wehner JM. Mutant mice lacking the γ isoform of protein kinase C show decreased behavioral actions of ethanol and altered function of γ-aminobutyrate type A receptors. Proc Natl Acad Sci USA 92:3658–3662;1995.Google Scholar
  73. 73.
    Heresco-Levy U, Javitt DC. The role of N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission in the pathophysiology and therapeutics of psychiatric syndromes. Eur Neuropsychopharmacol 8:141–152;1998.CrossRefPubMedGoogle Scholar
  74. 74.
    Herz A. Endogenous opioid systems and alcohol addiction. Psychopharmacology (Berl) 129:99–111;1997.CrossRefPubMedGoogle Scholar
  75. 75.
    Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 17:531–536;1994.CrossRefPubMedGoogle Scholar
  76. 76.
    Hoffman PL, Rabe CS, Moses F, Tabakoff B. N-methyl-D-aspartate receptors and ethanol: Inhibition of calcium flux and cyclic GMP production. J Neurochem 52:1937–1940;1989.PubMedGoogle Scholar
  77. 77.
    Hoffman PL, Rabe CS, Grant KA, Valverius P, Hudspith M, Tabakoff B. Ethanol and the NMDA receptor. Alcohol 7:229–231;1990.CrossRefPubMedGoogle Scholar
  78. 78.
    Hoffman PL. The effects of alcohol on excitatory amino acid receptor function; in Kranzler H, ed. Handbook of Experimental Pharmacology: The Pharmacology of Alcohol Abuse. Berlin, Springer, 1994.Google Scholar
  79. 79.
    Hoffman PL, Tabakoff B. The role of the NMDA receptor in ethanol withdrawal; in Jansson B, Jornvall H, Rydberg U, Terenius L, Vallee BL, eds. Toward a Molecular Basis of Alcohol Use and Abuse. Basel, Birkhäuser, 61–70;1994.Google Scholar
  80. 80.
    Hoffman PL. Glutamate receptors in alcohol withdrawal-induced neurotoxicity. Metab Brain Dis 10:73–79;1995.CrossRefPubMedGoogle Scholar
  81. 81.
    Hoffman PL, Iorio KR, Snell LD, Tabakoff B. Attenuation of glutamate-induced neurotoxicity in chronically ethanol-exposed cerebellar granule cells by NMDA receptor antagonists and ganglioside GM1. Alcohol Clin Exp Res 19:721–726;1995.PubMedGoogle Scholar
  82. 82.
    Hoffman PL, Tabakoff B. Alcohol dependence: A commentary on mechanisms. Alcohol Alcohol 31:333–340;1996.PubMedGoogle Scholar
  83. 83.
    Hsu CC, Thomas C, Chen W, Davis KM, Foos T, Chen JL, Wu E, Floor E, Schloss JV, Wu JY. Role of synaptic vesicle proton gradient and protein phosphorylation on ATP-mediated activation of membrane-associated brain glutamate decarboxylase. J Biol Chem 274:24366–24371;1999.CrossRefPubMedGoogle Scholar
  84. 84.
    Hsu CC, Davis KM, Jin H, Foos T, Floor E, Chen W, Tyburski JB, Yang CY, Schloss JV, Wu JY. Association of L-glutamic acid decarboxylase to the 70-kDa heat shock protein as a potential anchoring mechanism to synaptic vesicles. J Biol Chem 275:20822–20828;2000.CrossRefPubMedGoogle Scholar
  85. 85.
    Hu XJ, Ticku MK. Chronic ethanol treatment upregulates the NMDA receptor function and binding in mammalian cortical neurons. Brain Res Mol Brain Res 30:347–356;1995.CrossRefPubMedGoogle Scholar
  86. 86.
    Hunter T. Protein kinase classification. Methods Enzymol 200:3–37;1991.PubMedGoogle Scholar
  87. 87.
    Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268:2836–2843;1993.PubMedGoogle Scholar
  88. 88.
    Isokawa M. Modulation of GABAA receptor-mediated inhibition by postsynaptic calcium in epileptic hippocampal neurons. Brain Res 810:241–250;1998.CrossRefPubMedGoogle Scholar
  89. 89.
    Jensen O, Lisman JE. Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: Role of NMDA channels in recall. Learn Mem 3:264–278;1996.PubMedGoogle Scholar
  90. 90.
    Karlsen AE, Hagopian WA, Grubin CE, Dube S, Disteche CM, Adler DA, Barmeier H, Mathewes S, Grant FJ, Foster D, Lernmark A. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10. Proc Natl Acad Sci USA 88:8337–8341;1991.Google Scholar
  91. 91.
    Kaufman DL, Houser CR, Tobin AJ. Two forms of the aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distribution and cofactor interaction. J Neurochem 56:720–723;1991.PubMedGoogle Scholar
  92. 92.
    Kitamura Y, Miyazaki A, Yamanaka Y, Nomura Y. Stimulatory effects of protein kinase C and calmodulin kinase II on N-methyl-D-aspartate receptor/channels in the postsynaptic density of rat brain. J Neurochem 61:100–109;1993.PubMedGoogle Scholar
  93. 93.
    Kleppe IC, Robinson HP. Determining the activation time course of synaptic AMPA receptors form openings of colocalized NMDA receptors. Biophys J 77:1418–1427;1999.PubMedGoogle Scholar
  94. 94.
    Koh JY, Choi DW. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J Neurosci Methods 20:83–90;1987.CrossRefPubMedGoogle Scholar
  95. 95.
    Kojima N, Ishibashi H, Obata K, Kandel ER. Higher seizure susceptibility and enhanced tyrosine phosphorylation of N-methyl-D-aspartate receptor subunit 2B in fyn transgenic mice. Learn Mem 5:429–445;1998.PubMedGoogle Scholar
  96. 96.
    Kombian SB, Zidichouski JA, Pittman QJ. GABAB receptors presynaptically modulate excitatory synaptic transmission in the rat supraoptic nucleus in vitro. J Neurophysiol 76:1166–1179;1996.PubMedGoogle Scholar
  97. 97.
    Korpi ER, Uusi-Oukari M, Wegelius K, Casanova M, Zito M, Kleinman JE. Cerebellar and frontal cortical benzodiazepine receptors in human alcoholics and chronically alcoholdrinking rats. Biol Psychiatry 31:774–786;1992.CrossRefPubMedGoogle Scholar
  98. 98.
    Korpi ER. Role of GABAA receptors in the actions of alcohol and in alcoholism: Recent advances. Alcohol Alcohol 29:115–129;1994.PubMedGoogle Scholar
  99. 99.
    Kozlowski DA, Hilliard S, Schallert T. Ethanol consumption following recovery from unilateral damage to the forelimb area of the sensorimotor cortex: Reinstatement of deficits and prevention of dendritic pruning. Brain Res 763:159–166;1997.CrossRefPubMedGoogle Scholar
  100. 100.
    Kruger H, Wilce PA, Shanley BC. Ethanol and protein kinase C in rat brain. Neurochem Int 22:575–581;1993.CrossRefPubMedGoogle Scholar
  101. 101.
    Kumar KN, Tilakaratne N, Johnson PS, Allen AE, Michaelis EK. Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex. Nature 354:70–73;1991.CrossRefPubMedGoogle Scholar
  102. 102.
    Kumari M, Ticku MK. Regulation of NMDA receptors by ethanol. Prog Drug Res 54:152–189;2000.PubMedGoogle Scholar
  103. 103.
    Kuner T, Schoepfer R, Korpi ER. Ethanol inhibits glutamate-induced currents in heteromeric NMDA receptor subtypes. Neuroreport 5:297–300;1993.PubMedGoogle Scholar
  104. 104.
    Kuppenbender KD, Standaert DG, Feuerstein TJ, Penney JB Jr, Young AB, Landwehrmeyer GB. Expression of NMDA receptor subunit mRNAs in neurochemically identified projection and interneurons in the human striatum. J Comp Neurol 419:407–421;2000.CrossRefPubMedGoogle Scholar
  105. 105.
    Laine TPJ, Ahonen A, Torniainen P, Heikkila J, Pyhtinen J, Rasanen P, Niemela O, Hillbom M. Dopamine transporters increase in human brain after alcohol withdrawal. Mol Psychiatry 4:189–191;1999.CrossRefPubMedGoogle Scholar
  106. 106.
    Laprade N, Soghomonian JJ. Differential regulation of mRNA levels encoding for the two isoforms of glutamate decarboxylase (GAD65 and GAD67) by dopamine receptors in the rat striatum. Brain Res Mol Brain Res 34:65–74;1995.CrossRefPubMedGoogle Scholar
  107. 107.
    Laprade N, Soghomonian JJ. MK-801 decreases striatal and cortical GAD65 mRNA levels. Neuroreport 6:1885–1889;1995.PubMedGoogle Scholar
  108. 108.
    Laurie DJ, Bartke I, Schoepfer R, Naujoks K, Seeburg PH. Regional, developmental and interspecies expression of the four NMDAR2 subunits, examined using monoclonal antibodies. Brain Res Mol Brain Res 51:23–32;1997.CrossRefPubMedGoogle Scholar
  109. 109.
    Leidenheimer NJ, McQuilkin SJ, Hahner LD, Whiting P, Harris RA. Activation of protein kinase C selectively inhibits the gamma-aminobutyric acid A receptor: Role of desensitization. Mol Pharmacol 41:1116–1123;1992.PubMedGoogle Scholar
  110. 110.
    Levine MS, Klapstein GJ, Koppel A, Gruen E, Cepeda C, Vargas ME, Jokel ES, Carpenter EM, Zanjani H, Hurst RS, Efstratiadis A, Zeitlin S, Chesselet MF. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin models of Huntington's disease. J Neurosci Res 58:515–532;1999.CrossRefPubMedGoogle Scholar
  111. 111.
    Lewohl JM, Crane DI, Dodd PR. Alcohol, alcoholic brain damage, and GABAA receptor isoform gene expression. Nerurochem Int 29:677–684:1996.CrossRefGoogle Scholar
  112. 112.
    Lewohl JM, Craine DI, Dodd PR. Expression of the alpha 1, alpha 2 and alpha 3 isoforms of the GABAA receptor in human alcoholic brain. Brain Res 751:102–112;1997.PubMedGoogle Scholar
  113. 113.
    Lewohl JM, Craine DI, Dodd PR. A method for the quantitation of the alpha1, alpha2, and alpha3 isoforms of the GABAA receptor in human brain using competitive PCR. Brain Res Brain Res Protoc 1:347–356;1997.CrossRefPubMedGoogle Scholar
  114. 114.
    Li C, Peoples RW, Weight FF. Alcohol action on a neuronal membrane receptor: Evidence for a direct interaction with the receptor protein. Proc Natl Acad Sci USA 91:8200–8204;1994.Google Scholar
  115. 115.
    Li M, Yu W, Chen CH, Cwirla S, Whitehorn E, Tate E, Raab R, Bremer M, Dower B. In vitro selection of peptides acting at a new site of NMDA glutamate receptors. Nat Biotechnol 14:986–991;1996.CrossRefPubMedGoogle Scholar
  116. 116.
    Liljequist S. NMDA receptor antagonist, CGP 39551, inhibits ethanol withdrawal seizure. Eur J Pharmacol 192:197–198;1991.PubMedGoogle Scholar
  117. 117.
    Lima-Landman MT, Albuquerque EX. Ethanol potentiates and blocks NMDA-activated single-channel currents in rat hippocampal pyramidal cells. FEBS Lett 247:61–67;1989.CrossRefPubMedGoogle Scholar
  118. 118.
    Lingford-Hughes AR, Acton PD, Gacinovic S, Suckling J, Busatto GF, Boddington SJ, Bullmore E, Woodruff PW, Costa DC, Pilowsky LS, Ell PJ, Marshall EJ, Kerwin RW. Reduced levels of GABA-benzodiazepine receptor in alcohol dependency in the absence of grey matter atrophy. Br J Psychiatry 173:116–122;1998.PubMedGoogle Scholar
  119. 119.
    Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurological disorders. N Engl J Med 330:613–622;1994.CrossRefPubMedGoogle Scholar
  120. 120.
    Loopuijt LD, Schmidt WJ. The role of NMDA receptors in the slow neuronal degeneration of Parkinson's disease. Amino Acids 14:17–23;1998.CrossRefPubMedGoogle Scholar
  121. 121.
    Lovinger DM, White G, Weight FF. Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724;1989.PubMedGoogle Scholar
  122. 122.
    Lovinger DM, White G, Weight FF. NMDA receptor-mediated synaptic excitation selectively inhibited by ethanol in hippocampal slice from adult rat. J Neurosci 10:1372–1379;1990.PubMedGoogle Scholar
  123. 123.
    Lovinger DM. Excitotoxicity and Alcohol-Related Brain Damage. Alcohol Clin Exp Res 17:19–27;1993.PubMedGoogle Scholar
  124. 124.
    Lovinger DM. Alcohols and neurotransmitter gated ion channels: Past, present and future (review). Naunyn Schmiedebergs Arch Pharmacol 356:267–82;1997.PubMedGoogle Scholar
  125. 125.
    Lovinger DM. 5-HT3 receptors and the neural actions of alcohols: An increasingly exciting topic. Neurochem Int 35:125–130;1999.CrossRefPubMedGoogle Scholar
  126. 126.
    Lovinger DM, Sung KW, Zhou Q. Ethanol and trichloroethanol alter gating of 5-HT3 receptor-channels in NCB-20 neuroblastoma cells. Neuropharmacology 39:561–570;2000.CrossRefPubMedGoogle Scholar
  127. 127.
    Macdonald RL, Ethanol, gamma-aminobutyrate type A receptors, and protein kinase C phosphorylation. Proc Natl Acad Sci USA 92:3633–3635;1995.Google Scholar
  128. 128.
    Madamba SG, Schweitzer P, Zieglgansberger W, Siggins GR. Acamprosate (calcium acetyl-homotaurinate) enhances the N-methyl-D-aspartate component of excitatory neurotransmission in rat hippocampal CA1 neurons in vitro. Alcohol Clin Exp Res 20:651–658;1996.PubMedGoogle Scholar
  129. 129.
    Mantle D, Preedy VR. Free radicals as mediators of alcohol toxicity. Adverse Drug React Toxicol Rev 18:235–252;1999.PubMedGoogle Scholar
  130. 130.
    Mao J. NMDA and opioid receptors: Their interactions in antinociception, tolerance and neuroplasticity. Brain Res Brain Res Rev 30:289–304;1999.CrossRefPubMedGoogle Scholar
  131. 131.
    Martin D, Swartzwelder HS. Ethanol inhibits release of excitatory amino acids from slices of hippocampal area CA1. Eur J Pharmacol 219:469–472;1992.CrossRefPubMedGoogle Scholar
  132. 132.
    Mathern GW, Pretorius JK, Mendoza D, Lozada A, Leite JP, Chimelli L, Fried I, Sakamoto AC, Assirati JA, Adelson PD. Increased hippocampal AMPA and NMDA receptor subunit immunoreactivity in temporal lobe epilepsy patients. 57:615–634;1998.Google Scholar
  133. 133.
    Matthews DB, Kralic JE, Devaud LL, Fritschy JM, Morrow AL. Chronic blockade of N-methyl-D-aspartate receptors alters gamma-aminobutyric acid type A receptor peptide expression and function in the rat. J Neurochem 74:1522–1528;2000.CrossRefPubMedGoogle Scholar
  134. 134.
    McGlade-McCulloh E, Yamamoto H, Tan SE, Brickey DA, Soderling TR. Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature 362:640–642;1993.CrossRefPubMedGoogle Scholar
  135. 135.
    Mehta AK, Ticku MK. Prevalence of the GABAA receptor assemblies containing alpha1-subunit in the rat cerebellum and cerebral cortex as determined by immunoprecipitation: Lack of modulation by chronic ethanol administration. Brain Res Mol Brain Res 67:194–199;1999.CrossRefPubMedGoogle Scholar
  136. 136.
    Meldrum BS. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J Nutr 130:1007S-1015S;2000.PubMedGoogle Scholar
  137. 137.
    Melis F, Stancampiano R, Imperato A, Carta G, Fadda F. Chronic ethanol consumption in rats: Correlation between memory performance and hippocampal acetylcholine release in vivo. Neuroscience 74:155–159;1996.CrossRefPubMedGoogle Scholar
  138. 138.
    Menzano E, Carlen PL. Zinc deficiency and corticosteroids in the pathogenesis of alcoholic brain dysfunction — A review. Alcohol Clin Exp Res 18:895–901;1994.PubMedGoogle Scholar
  139. 139.
    Meoni P, Bunnemann BH, Trist DG, Bowery NG. N-terminal splice variants of the NMDAR1 glutamate receptor subunit: Differential expression in human and monkey brain. Neurosci Lett 249:45–48;1998.CrossRefPubMedGoogle Scholar
  140. 140.
    Mhatre MC, Ticke MK. Chronic GABA treatment downregulates the GABAA receptor α2 and α3 subunit mRNAs as well as polypeptide expression in primary cultured cerebral cortical neurons. Mol Brain Res 24:159–165;1994.CrossRefPubMedGoogle Scholar
  141. 141.
    Michaelis EK, Mulvaney MJ, Freed WJ. Effects of acute and chronic ethanol intake on synaptosomal glutamate binding activity. Biochem Pharmacol 27:1685–1691;1978.CrossRefPubMedGoogle Scholar
  142. 142.
    Michaelis EK. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54:369–415;1998.Google Scholar
  143. 143.
    Middleton HM. Intestinal hydrolysis of pyridoxal 5′-phosphate in vitro and in vivo in the rat: Effect of ethanol. Am J Clin Nutr 43:374–381;1986.PubMedGoogle Scholar
  144. 144.
    Miller LP, Walters JR. Effect of depolarization on cofactor regulation of glutamic acid decarboxylase in substantia nigra synaptosomes. J Neurochem 33:533–539;1979.PubMedGoogle Scholar
  145. 145.
    Mitsuyama H, Little KY, Sieghart W, Devaud LL, Morrow AL. GABA(A) receptor alpha1, alpha4, and beta3 subunit mRNA and protein expression in the frontal cortex of human alcoholics. Alcohol Clin Exp Res 22:815–822;1998.PubMedGoogle Scholar
  146. 146.
    Moghaddam B, Bolinao ML. Biphasic effect of ethanol on extracellular accumulation of glutamate in the hippocampus and the nucleus accumbens. Neurosci Lett 178:99–102;1994.CrossRefPubMedGoogle Scholar
  147. 147.
    Montpied P, Morrow AL, Karanian JW, Ginns EI, Martin BM, Paul SM. Prolonged ethanol inhalation decreases gamma-aminobutyric acid A receptor alpha subunit mRNAs in the rat cerebral cortex. Mol Pharmacol 39:157–163;1991.PubMedGoogle Scholar
  148. 148.
    Morari M, O'Connor WT, Ungerstedt U, Bianchi C, Fuxe K. Functional neuroanatomy of the nigrostriatal and striatonigral pathways as studied with dual probe microdialysis in the awake rat — II. Evidence for striatal N-methyl-D-aspartate receptor regulation of striatonigral GABAergic transmission and motor function. Neuroscience 72:89–97;1996.CrossRefPubMedGoogle Scholar
  149. 149.
    Morrisett RA, Rezvani AH, Overstreet D, Janowsky DS, Wilson WA, Swartzwelder HS. MK-801 potently inhibits alcohol withdrawal seizures in rats. Eur J Pharmacol 176:103–105;1990.CrossRefPubMedGoogle Scholar
  150. 150.
    Morrisett RA, Martin D, Oetting TA, Lewis DV, Wilson WA, Swartzwelder HS. Ethanol and magnesium ions inhibit N-methyl-D-aspartate-mediated synaptic potentials in an interactive manner. Neuropharmacology 30:1173–1178;1991CrossRefPubMedGoogle Scholar
  151. 151.
    Morrow AL, Montpied P, Lingford-Hughes A, Paul SM. Chronic ethanol and pentobarbital administration in the rat: Effects on GABAA receptor function and expression in brain. Alcohol 7:237–244;1990.CrossRefPubMedGoogle Scholar
  152. 152.
    Morrow AL. Regulation of GABAA receptor function and gene expression in the central nervous system. Int Rev Neurobiol 38:1–41;1995.PubMedGoogle Scholar
  153. 153.
    Mortensen M, Matsumoto I, Niwa S, Dodd PR. The modulatory effect of spermine on the glutamate-NMDA receptor is regionally variable in normal adult cerebral cortex. Pharmacol Toxicol 84:135–142;1999.PubMedGoogle Scholar
  154. 154.
    Murphy NP, Cordier J, Glowinski J, Premont J. Is protein kinase C activity required for the N-methyl-D-aspartate-evoked rise in cytosolic Ca2+ in mouse striatal neurons? Eur J Neurosci 6:854–860;1994.PubMedGoogle Scholar
  155. 155.
    Nagendra SN, Faiman MD, Davis K, Wu JY, Newby X, Scholss JV. Carbamoylation of brain glutamate receptors by a disulfiram metabolite. J Biol Chem 272:24247–24250;1997.CrossRefGoogle Scholar
  156. 156.
    National Institute on Alcohol Abuse and Alcoholism, Seventh Special Report to the US Congress on Alcohol and Health. US Department of Health and Human Services; 1990.Google Scholar
  157. 157.
    National Institute on Alcohol Abuse and Alcoholism, Eighth Special Report to the US Congress on Alcohol and Health. US Department of Health and Human Services; 1993.Google Scholar
  158. 158.
    Nevo I, Hamon M. Neurotransmitter and neuromodulatory mechanisms involved in alcohol abuse and alcoholism (review). Neurochem Int 26:305–336;1995.CrossRefPubMedGoogle Scholar
  159. 159.
    Nie Z, Yuan X, Madamba SG, Siggins GR. Ethanol decreases glutamatergic synaptic transmission in the rat nucleus accumbens in vitro: Naloxone reversal. J Pharmacol Exp Ther 266:1705–1712;1993.PubMedGoogle Scholar
  160. 160.
    Ningaraj NS, Chen W, Schloss JV, Faiman MD, Wu JY. S-methyl-N,N-diethylthiocarbamate sulfoxide elicits neuroprotective effect against NMDA receptor-mediated neurotoxicity. J Biomed Sci 8:104–113;2001.PubMedGoogle Scholar
  161. 161.
    Noble EP. Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: A review. Eur Psychiatry 15:79–89;2000.CrossRefGoogle Scholar
  162. 162.
    Olsen RW, Tobin AJ. Molecular biology of GABAA receptors. FASEB J 4:1469–1480;1990.PubMedGoogle Scholar
  163. 163.
    Olsen RW, Bureau MH, Endo S, Smith G. The GABAA receptor family in the mammalian brain. Neurochem Res 16:317–325;1991.CrossRefPubMedGoogle Scholar
  164. 164.
    Pandey SC. Neuronal signaling systems and ethanol dependence. Mol Neurobiol 17:1–15;1998.PubMedGoogle Scholar
  165. 165.
    Paolette P, Ascher P, Neyton J. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci 17:5711–5725;1997.PubMedGoogle Scholar
  166. 166.
    Peoples RW, Weight FF. Cutoff in potency implicates alcohol inhibition of N-methyl-D-aspartate receptors in alcohol intoxication. Proc Natl Acad Sci USA 92:2825–2829;1995.Google Scholar
  167. 167.
    Petty F, Fulton M, Moeller FG, Kramer G, Wilson L, Fraser K, Isbell P. Plasma gamma-aminobutyric acid (GABA) is low in alcoholics. Psychopharmacol Bull 29:277–281;1993.PubMedGoogle Scholar
  168. 168.
    Popp RL, Lickteig RL, Lovinger DM. Factors that enhance ethanol inhibition of N-methyl-D-aspartate receptors in cerebellar granule cells. J Pharmacol Exp Ther 289:1564–1574;1999.PubMedGoogle Scholar
  169. 169.
    Priestley T, Laughton P, Myers J, Bourdelles BL, Kerby J, Whiting PJ. Pharmacological properties of recombinant human N-methyl-D-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Mol Pharmacol 48:841–848;1995.PubMedGoogle Scholar
  170. 170.
    Rabe CS, Tabakoff B. Glycine site directed agonists reverse ethanol's actions at the NMDA receptor. Mol Pharmacol 38:753–757;1990.PubMedGoogle Scholar
  171. 171.
    Rabow LE, Russek SJ, Farb DH. From ion currents to genomic analysis: Recent advances in GABAA receptor research. Synapse 21:189–274;1995.CrossRefPubMedGoogle Scholar
  172. 172.
    Rafiki A, Bernard A, Medina I, Gozlan H, Khrestchatisky M. Characterization in cultured cerebellar granule cells and in the developing rat brain of mRNA variants for the NMDA receptor 2C subunit. J Neurochem 74:1798–1808;2000.CrossRefPubMedGoogle Scholar
  173. 173.
    Raymond LA, Blackstone CD, Huganir RL. Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity. Trends Neurosci 16:147–153;1993.CrossRefPubMedGoogle Scholar
  174. 174.
    Riikonen J, Jaatinen P, Karjala K, Rintala J, Porsti I, Wu X, Eriksson CJP, Hervonen A. Effects of continuous versus intermittent ethanol exposure on rat sympathetic neurons. Alcohol Clin Exp Res 23:1245–1250;1999.PubMedGoogle Scholar
  175. 175.
    Rimvall K, Sheikh SN, Martin DL. Effect of increased γ-aminobutyric acid levels on GAD67 protein and mRNA levels in rat cerebral cortex. J Neurochem 60:714–720;1993.PubMedGoogle Scholar
  176. 176.
    Rimvall K, Martin DL. The level of GAD67 protein is highly sensitive to small increases in intraneuronal γ-aminobutyric acid levels. J Neurochem 62:1375–1381;1994.PubMedGoogle Scholar
  177. 177.
    Roberts E, Chase T, Tower DB. GABA in Nervous System Function. New York, Raven, 1976.Google Scholar
  178. 178.
    Roivainen R, Hundle B, Messing RO. Protein kinase C and adaption to ethanol; in Jansson B, Jornvall H, Rydberg U, Terenius L, Vallee BL, eds. Toward a Molecular Basis of Alcohol Use and Abuse. Basel, Birkhäuser, 29–38;1994.Google Scholar
  179. 179.
    Rossetti ZL, Hmaidan Y, Gessa GL. Marked inhibition of mesolimbic dopamine release: A common feature of ethanol, morphine, cocaine and amphetamine abstinence in rats. Eur J Pharmacol 221:227–234;1992.CrossRefPubMedGoogle Scholar
  180. 180.
    Rossetti ZL, Carboni S. Ethanol withdrawal is associated with increased extracellular glutamate in the rat striatum. Eur J Pharmacol 283:177–183;1995.CrossRefPubMedGoogle Scholar
  181. 181.
    Royce JE, Scratchley D. Alcoholism and Other Drug Problems. New York, Free Press 67; 1996.Google Scholar
  182. 182.
    Rudolph JG, Walker DW, Iimuro Y, Thurman RG, Crews FT. NMDA receptor binding in adult rat brain after several chronic ethanol treatment protocols. Alcohol Clin Exp Res 21:1508–1519;1997.PubMedGoogle Scholar
  183. 183.
    Salter MW. Src, N-methyl-D-aspartate (NMDA) receptors, and synaptic plasticity. Biochem Pharmacol 56:789–798;1998.CrossRefPubMedGoogle Scholar
  184. 184.
    Samson HH, Harris RA. Neurobiology of alcohol abuse. Trends Pharmacol Sci 13:206–211;1992.CrossRefGoogle Scholar
  185. 185.
    Sandstead HH, Frederickson CJ, Penland JG. History of zinc as related to brain function. J Nutr 130:496S-502S;2000.PubMedGoogle Scholar
  186. 186.
    Sang CN. NMDA-receptor antagonists in neuropathic pain: Experimental methods to clinical trials. J Pain Symptom Manage 19:S21-S25;2000.CrossRefPubMedGoogle Scholar
  187. 187.
    Sanna E, Harris RA. Recent developments in alcoholism: Neuronal ion channels (review). Recent Dev Alcohol 11:169–186;1993.PubMedGoogle Scholar
  188. 188.
    Seeburg PH, Burnashev N, Kohr G, Kuner T, Sprengel R, Monyer H. The NMDA receptor channel: Molecular design of a coincidence detector. Recent Prog Horm Res 50:19–34;1995.PubMedGoogle Scholar
  189. 189.
    Seeman P. The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655;1972.PubMedGoogle Scholar
  190. 190.
    Shefner SA. Electrophysiological effects of ethanol on brain neurons. In: Watson RR, ed. Biochemistry and Physiology of Substance Abuse. Boca Raton, CRC Press, 2:25–52;1990.Google Scholar
  191. 191.
    Sieghart W. Molecular basis of pharmacological heterogeneity of GABAA receptors. Cell Signal 4:231–237;1992.CrossRefPubMedGoogle Scholar
  192. 192.
    Sigel E, Baur R, Malherbe P. Recombinant GABAA receptor function and ethanol. FEBS Lett 324:140–142;1993.CrossRefPubMedGoogle Scholar
  193. 193.
    Sigel E, Baur R Malherbe P. Protein kinase C transiently activates heteromeric N-methyl-D-aspartate receptor channels independent of the phosphorylatable C-terminal splice domain and of consensus phosphorylation sites. J Biol Chem 269:8204–8208;1994.Google Scholar
  194. 194.
    Singh AN, Srivastava S, Jainar AK. Pharmacotherapy of chronic alcoholism: A review. Drugs Today 35:27–33;1999.Google Scholar
  195. 195.
    Slater SJ, Cox KJA, Lombardi JV, Ho C, Kelly MB, Rubin E, Stubbs CD. Inhibition of protein kinase C by alcohols and anaesthetics. Nature 364:82–84;1993.CrossRefPubMedGoogle Scholar
  196. 196.
    Snell LD, Claffey DJ, Ruth JA, Valenzuela CF, Cardoso R, Wang Z, Levinson SR, Sather WA, Williamson AV, Ingersoll NC, Ovchinnikova L, Bhave SV, Hoffman PL, Tabakoff B. Novel structure having antagonist actions at both the glycine site of the N-methyl-D-aspartate receptor and neuronal voltage-sensitive sodium channels: Biochemical, electrophysiological, and behavioral characterization. J Pharmacol Exp Ther 292:215–227;2000.PubMedGoogle Scholar
  197. 197.
    Snell LD, Iorio KR, Tabakoff B, Hoffman PL. Protein kinase C activation attenuates N-methyl-D-aspartate induced increases in intracellular calcium in cerebellar granule cells. J Neurochem 62:1783–1789;1994.PubMedGoogle Scholar
  198. 198.
    Snell LD, Nunley KR, Lickteig RL, Browning MD, Tabakoff B., Hoffman PL. Regional and subunit specific changes in NMDA receptor mRNA and immunoreactivity in mouse brain following chronic ethanol ingestion. Mol Brain Res 40:71–78;1996.CrossRefPubMedGoogle Scholar
  199. 199.
    Somogyi R, Wen X, Ma W, Barker JL. Developmental kinetics of GAD family mRNAs parallel neurogenesis in the rat spinal cord. J Neurosci 15:2575–2591;1995.PubMedGoogle Scholar
  200. 200.
    Strack S, Colbran RJ. Autophosphorylation-dependent targeting of calcium/calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 273:20689–20692;1998.Google Scholar
  201. 201.
    Suzdak PD, Schwartz RD, Skolnick P, Paul SM. Ethanol stimulates gamma-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci USA 83:4071–4075;1986.PubMedGoogle Scholar
  202. 202.
    Svensson TH, Dysfunctional brain dopamine systems induced by psychotomimetic NMDA-receptor antagonists and the effects of antipsychotic drugs. Brain Res Brain Res Rev 31:320–329;2000.CrossRefPubMedGoogle Scholar
  203. 203.
    Swope SL, Moss SI, Raymond LA, Huganir RI. Regulation of ligand-gated ion channels by protein phosphorylation. Adv Second Messenger Phosphoprotein Res 33:49–78;1999.PubMedGoogle Scholar
  204. 204.
    Tabakoff B, Hoffman PL. Alcohol: neurobiology. In Lowinson JH, Ruiz P, Millman RB, Langrod JG, eds. Substance Abuse: A Comprehensive Textbook, ed 2. Baltimore, Williams & Wilkins, 152–185;1992.Google Scholar
  205. 205.
    Tabakoff B, Hoffman PL. Ethanol, sedative hypnotics, and glutamate receptor function in brain and cultured cells. Behav Gen 23:231–236;1993.CrossRefGoogle Scholar
  206. 206.
    Tabakoff B, Hoffman PL. Effect of alcohol on neurotransmitters and their receptors and enzymes. In Begleiter H, Kissin B; eds. The Pharmacology of Alcohol and Alcohol Dependence. Oxford University Press, 356–430;1996.Google Scholar
  207. 207.
    Tezuka T, Umemori H, Akiyama T, Nakanishi S, Yamamoto T. PSD-95 promotes Fynmediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci 96:435–440;1999.CrossRefPubMedGoogle Scholar
  208. 208.
    Ticku MK. The effects of acute and chronic ethanol administration and its withdrawal on GABA receptor binding in rat brain. Br J Pharmacol 70:403–410;1980.PubMedGoogle Scholar
  209. 209.
    Ticku MK, Burch TP. Alterations in gamma-aminobutyric acid receptor sensitivity following acute and chronic ethanol treatment. J Neurochem 34:417–423;1980.PubMedGoogle Scholar
  210. 210.
    Tsai G, Gastfried DR, Coyle JT. The glutamatergic basis of human alcoholism. Am J Psychiatry 152:332–340;1995.PubMedGoogle Scholar
  211. 211.
    Tsai G, Coyle JT. The role of glutamatergic neurotransmission in the pathophysiology of alcoholism. Ann Rev Med 49:173–184;1998.CrossRefPubMedGoogle Scholar
  212. 212.
    Tsai G. Glutamatergic Neurotransmission in Alcoholism. J Biomed Sci 5:309–320;1998.Google Scholar
  213. 213.
    Vaillant GE. The Natural History of Alcoholism. Cambridge, Mass., Harvard University Press; 1983.Google Scholar
  214. 214.
    Valverius P, Borg S, Valverius MR, Hoffman PL, Tabakoff B. Beta-adrenergic receptor binding in brain of alcoholics. Exp Neurol 105:280–286;1989.CrossRefPubMedGoogle Scholar
  215. 215.
    Verhagen ML, Del DP, Blanchet PJ, van den Munckhof P, Chase TN. Blockade of glutamatergic transmission as treatment for dyskinesias and motor fluctuations in Parkinson's disease. Amino Acids 14:75–82;1998.CrossRefPubMedGoogle Scholar
  216. 216.
    Wafford KA, Burnett DM, Leidenheimer NJ, Burt DR, Wang JB, Kofuji P, Dunwiddie TV, Harris RA, Sikela JM. Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires eight amino acids contained in the γ2L subunit of the receptor complex. Neuron 7:27–33;1991.CrossRefPubMedGoogle Scholar
  217. 217.
    Wafford KA, Whiting PJ. Ethanol potentiation of GABAA receptors requires phosphorylation of the alternatively spliced variant of the gamma 2 subunit. FEBS Lett 313:113–117;1992.CrossRefPubMedGoogle Scholar
  218. 218.
    Wagey RT, Krieger C. Abnormalities of protein kinases in neurodegenerative diseases. Prog Drug Res 51:133–183;1998.PubMedGoogle Scholar
  219. 219.
    Wang XJ. Synaptic basis of cortical persistent activity: The importance of NMDA receptors to working memory. J Neurosci 19:9587–9603;1999.PubMedGoogle Scholar
  220. 220.
    Weiner JL, Zhang L, Carlen PL. Potentiation of GABA-A-mediated synaptic current by ethanol in hippocampal CA1 neurons: Possible role of protein kinase C. J Pharmacol Exp Ther 268:1388–1395;1994.PubMedGoogle Scholar
  221. 221.
    Weiner JL, Dunwiddie TV, Valenzuela CF. Ethanol inhibition of synaptically evoked kainate responses in rat hippocampal CA3 pyramidal neurons. Mol Pharmacol 56:85–90;1999.PubMedGoogle Scholar
  222. 222.
    Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, Sheng M, Scott JD. Regulation of NMD receptors by an associated phosphatase-kinase signaling complex. Science 285:93–96;1999.CrossRefPubMedGoogle Scholar
  223. 223.
    White G, Lovinger DM, Weight FF. Ethanol inhibits NMDA-activated current but does not alter GABA-activated current in an isolated mammalian neuron. Brain Res 507:332–336;1990.CrossRefPubMedGoogle Scholar
  224. 224.
    Wirkner K, Poelchen W, Koles L, Muhlberg K, Scheibler P, Allgaier C, IIes P. Ethanol-induced inhibition of NMDA receptor channels. Neurochem Int 35:153–162;1999.CrossRefPubMedGoogle Scholar
  225. 225.
    Wright JM, Peoples RW, Weight FF. Singlechannel and whole-cell analysis of ethanol inhibition of NMDA-activated currents in cultured mouse cortical and hippocampal neurons. Brain Res 738:249–256;1996.CrossRefPubMedGoogle Scholar
  226. 226.
    Wu JY, Roberts E. Properties of brain L-glutamate decarboxylase: Inhibition studies. J Neurochem 23:759–767;1974.PubMedGoogle Scholar
  227. 227.
    Xiong ZG, Raouf R, Lu WY, Wang LY, Orser BA, Dudek EM, Browning MD, MacDonald JF. Regulation of N-methyl-D-aspartate receptor function by constitutively active protein kinase C. Mol Pharmacol 54:1055–1063;1998.PubMedGoogle Scholar
  228. 228.
    Yan QS, Reith MEA, Yan SG, Jobe PC. Effect of systemic ethanol on basal and stimulated glutamate releases in the nucleus accumbens of freely moving Sprague-Dawley rats: A microdialysis study. Neurosci Lett 258:29–32;1998.CrossRefPubMedGoogle Scholar
  229. 229.
    Young AM, Bradford HF. N-methyl-D-aspartate releases excitatory amino acids in rat corpus striatum in vivo. J Neurochem 56:1677–1683;1991.PubMedGoogle Scholar
  230. 230.
    Yu XM, Salter MW. Src, a molecular switch governing gain control of synaptic transmission mediated by N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 96:7697–7704;1999.Google Scholar
  231. 231.
    Zeise ML, Kasparov S, Capogna M, Zieglgansberger W. Acamprosate (calcium acetylhomotaurine) decreases postsynaptic potentials in the rat neocortex: Possible involvement of excitatory amino acid receptors. Eur J Pharmacol 231:47–52;1993.PubMedGoogle Scholar
  232. 232.
    Zhou Q, Verdoorn TA, Lovinger DM. Alcohols potentiate the function of 5-HT3 receptor-channels on NCB-20 neuroblastoma cells by favouring and stabilizing the open channel state. J Physiol 507:335–352;1998.CrossRefPubMedGoogle Scholar

Copyright information

© National Science Council 2001

Authors and Affiliations

  • Kathleen M. Davis
    • 1
  • Jang-Yen Wu
    • 1
  1. 1.Departments of Molecular Biosciences and Medical ChemistryUniversity of KansasLawrenceUSA

Personalised recommendations