Netherland Journal of Aquatic Ecology

, Volume 26, Issue 2–4, pp 101–122 | Cite as

Freshwater biomonitoring and Chironomidae

  • David M. Rosenberg
Thienemann Lecture

Abstract

The use of Chironomidae in the biomonitoring of fresh waters is reviewed. Examples are given for levels of organization from organism to ecosystem, and a separate consideration is devoted to toxicity studies. Morphological deformities and life-history responses of Chironomidae to contaminants are common organism-level indicators. At the species-assemblage level, the classic lake trophic classification scheme, its contemporary derivatives, and paleolimnological approaches have been used extensively. Chironomidae also are essential components of quantitative and qualitative (rapid assessment) community approaches to biomonitoring. Examples of chironomids as components of ecosystem-level studies are rare, but even the few studies done show their value for this purpose. In toxicity testing, Chironomidae frequently are used in single species acute, single species chronic, and multispecies tests for a variety of stressors; Chironomidae could be used profitably in any expansion of toxicity testing involving macroinvertebrates. The review indicated that more emphasis on Chironomidae is required in studies of biochemical and physiological indicators of contaminants (organism level), and on Chironomidae as sentinel organisms (population level). Extensive use of Chironomidae in biomonitoring of fresh waters is consistent with the abundance and taxa richness of this group in natural habitats.

Keywords

Review organism population community ecosystem toxicity studies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALI, A., 1981. Laboratory evaluation of organophosphate and new synthetic pyrethroid insecticides against pestiferous chironomid midges of central Florida. Mosquito News, 41: 157–161.Google Scholar
  2. ALI, A. and J.K. NAYAR, 1985. Activity of an avermectin insecticide, Abamectin (MK-936), against mosquitoes and chironomid midges in the laboratory. J. Amer. Mosquito Control Assoc., 1: 384–386.Google Scholar
  3. ALI, A. and J.K. NAYAR, 1987. Laboratory toxicity of a new benzoylphenylurea insect growth regulator (UC-84572) against mosquitoes and chironomid midges. J. Amer. Mosquito Control Assoc., 3: 309–311.Google Scholar
  4. ANDERSON, R.L., 1980. Chironomidae toxicity tests-biological background and procedures. In: A.L. Buikema, Jr. and J. Cairns, Jr., eds., Aquatic Invertebrate Bioassays, ASTM STP 715. American Society for Testing and Materials, Philadelphia, p. 70–80.Google Scholar
  5. ANDERSON, R.L., C.T. WALBRIDGE and J.T. FIANDT, 1980. Survival and growth ofTanytarsus dissimilis (Chironomidae) exposed to copper, cadmium, zinc, and lead. Arch. Environ. Contam. and Toxicol., 9: 329–335.Google Scholar
  6. ARMITAGE, P.L., D. MOSS, J.F. WRIGHT and M.T. FURSE, 1983. The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Res., 17: 333–347.Google Scholar
  7. ARTHUR, J.W., J.A. ZISCHKE, K.N. ALLEN and R.O. HERMANUTZ, 1983. Effects of diazinon on macroinvertebrates and insect emergence in outdoor experimental channels. Aquat. Toxicol., 4: 283–301.Google Scholar
  8. BALLOCH, D., C.E. DAVIES and F.H. JONES, 1976. Biological assessment of water quality in three British rivers: the North Esk (Scotland), the Ivel (England) and the Taf (Wales). Water Poll. Contr., 75: 92–114.Google Scholar
  9. BATAC-CATALAN, Z. and D.S. WHITE, 1983. Effect of chromium on larval Chironomidae as determined by the optical-fiber light-interruption biomonitoring system. In: W.E. Bishop, R.D. Cardwell and B.B. Heidolph, eds. Aquatic Toxicology and Hazard Assessment: Sixth Symposium. ASTM STP 802. American Society for Testing and Materials, Philadelphia, p. 469–481.Google Scholar
  10. BAYNE, B.L., 1989. Measuring the biological effects of pollution: the Mussel Watch approach. Water Sci. Technol., 21: 1089–1100.Google Scholar
  11. BELL, H.L., 1970. Effects of pH on the life cycle of the midgeTanytarsus dissimilis. Can. Entomol., 102: 636–639.Google Scholar
  12. BENKE, A.C., T.C. VAN ARSDALL, Jr. and D.M. GILLESPIE, 1984. Invertebrate productivity in a subtropical blackwater river: the importance of habitat and life history. Ecol. Monogr., 54: 25–63.Google Scholar
  13. BILYJ, B. and I.J. DAVIES, 1989. Descriptions and ecological notes on seven new species ofCladotanytarsus (Chironomidae: Diptera) collected from an experimentally acidified lake. Can. J. Zool., 67: 948–962.Google Scholar
  14. BOYLE, T.P., S.E. FINGER, R.L. PAULSON and C.F. RABENI, 1985. Comparison of laboratory and field assessment of fluorene — Part II: Effects on the ecological structure and function of experimental pond ecosystems. In: T.P. Boyle, ed., Validation and Predictability of Laboratory Methods for Assessing the Fate and Effects of Contaminants in Aquatic Ecosystems, ASTM STP 865. American Society for Testing and Materials, Philadelphia, p. 134–151.Google Scholar
  15. BRINKHURST, R.O., P.M. CHAPMAN and M.A. FARRELL, 1983. A comparative study of respiration rates of some aquatic oligochaetes in relation to sublethal stress. Int. Revue ges. Hydrobiol., 68: 683–699.Google Scholar
  16. BRINKHURST, R.O., A.L. HAMILTON and H.B. HERRINGTON, 1968. Components of the bottom fauna of the St. Lawrence, Great Lakes. Great Lakes Institute, University of Toronto No. PR 33, 50 p.Google Scholar
  17. BRUNDIN, L., 1949. Chironomiden und andere Bodentiere der südschwedischen Urgebirgsseen. Institute of Freshwater Research Drottningholm Report, 30: 1–914.Google Scholar
  18. BRUNDIN, L., 1958. The bottom faunistical lake type system and its application to the southern hemisphere. Moreover a theory of glacial erosion as a factor of productivity in lakes and oceans. Verh. Internat. Verein. Limnol., 13: 288–297.Google Scholar
  19. BUHL, K.J. and N.L. FAERBER, 1989. Acute toxicity of selected herbicides and surfactants to larvae of the midgeChironomus riparius. Arch. Environ. Contam. Toxicol., 18: 530–536.Google Scholar
  20. BUIKEMA, A.L., Jr. and J.R. VOSHELL, Jr., 1993. Toxicity studies using freshwater benthic macroinvertebrates. In: D.M. Rosenberg and V.H. Resh, eds., Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, p. 344–398.Google Scholar
  21. BUTLER, M.G., 1984. Life histories of aquatic insects. In: V.H. Resh and D.M. Rosenberg, eds., The Ecology of Aquatic Insects. Praeger, New York, p. 24–55.Google Scholar
  22. CAIRNS, J., Jr. and J.R. PRATT, 1993. A history of biological monitoring using benthic macroinvertebrates. In: D.M. Rosenberg and V.H. Resh, eds., Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, p. 10–27.Google Scholar
  23. CLEMENTS, W.H., D.S. CHERRY and J. CAIRNS, Jr., 1988. Structural alterations in aquatic insect communities exposed to copper in laboratory streams. Environ. Toxicol. Chem., 7: 715–722.Google Scholar
  24. CLEMENTS, W.H., D.S. CHERRY and J. CAIRNS, Jr., 1989. The influence of copper exposure on predator-prey interactions in aquatic insect communities. Freshwat. Biol., 21: 483–488.Google Scholar
  25. COFFMAN, W.P. and L.C. FERRINGTON, Jr., 1984. Chironomidae. In: R.W. Merritt and K.W. Cummins, eds., An Introduction to the Aquatic Insects of North America. 2nd ed. Kendall/Hunt, Dubuque, IA, p. 551–652.Google Scholar
  26. COURTEMANCH, D.L. and S.P. DAVIES, 1987. A coefficient of community loss to assess detrimental change in aquatic communities. Water Res., 21: 217–222.Google Scholar
  27. CROSSLAND, N.O., 1984. Fate and biological effects of methyl parathion in outdoor ponds and laboratory aquaria. Ecotoxicol. Environ. Safety, 8: 482–495.Google Scholar
  28. CUSHMAN, R.M., 1984. Chironomid deformities as indicators of pollution from a synthetic, coal-derived oil. Freshwat. Biol. 14: 179–182.Google Scholar
  29. CUSHMAN, R.M. and J.C. GOYERT, 1984. Effects of a synthetic crude oil on pond benthic insects. Environ. Pollut. (Ser. A), 33: 163–186.Google Scholar
  30. DARVILLE, R.G. and J.L. WILHM, 1984. The effect of naphthalene on oxygen consumption and hemoglobin concentration inChironomus attenuatus and on oxygen consumption and life cycle ofTanytarsus dissimilis. Environ. Toxicol. Chem., 3: 135–141.Google Scholar
  31. DAUBLE, D.D., W.E. FALLON, R.H. GRAY and R.M. BEAN, 1982. Effects of coal liquid water0-soluble fractions on growth and survival of four aquatic organisms. Arch. Environ. Contam. Toxicol., 11: 553–560.Google Scholar
  32. DAUBLE, D.D. and J.R. SKALSKI, 1983. Oviposition ofTanytarsus dissimilis (Diptera: Chironomidae) in avoidance trials with coal liquid water-soluble components. Environ. Entomol., 12: 1733–1736.Google Scholar
  33. DAVIES, I.J., 1980. Relationships between dipteran emergence and phytoplankton production in the Experimental Lakes Area, north-western Ontario. Can. J. Fish. Aquat. Sci., 37: 523–533.Google Scholar
  34. DAVIES, I.J., 1991. Canadian freshwater biomonitoring: the programme of Fisheries and Oceans. In: Yu.A. Izrael, S.M. Semenov, G.E. Insarov, V.A. Abakumov and T.A. Golovina, eds., Problems of Ecological Monitoring and Ecosystem Modelling. Vol. XIII. USSR Academy of Sciences, Leningrad, p. 75–88. (In Russian; English original available from I.J. Davies, Freshwater Institute, Winnipeg, Canada).Google Scholar
  35. DE PAUW, N. and G. VANHOOREN, 1983. Method for biological quality assessment of watercourses in Belgium. Hydrobiologia, 100: 153–168.Google Scholar
  36. DEWEY, S.L., 1986. Effects of the herbicide atrazine on aquatic insect community structure and emergence. Ecology, 67: 148–162.Google Scholar
  37. DICKMAN, M., Q. LAN and B. MATTHEWS, 1990. Teratogens in the Niagara River watershed as reflected by chironomid (Diptera: Chironomidae) labial plate deformities. Water Pollut. Res. J. Can., 24: 47–79.Google Scholar
  38. FERRINGTON, L.C., Jr. and N.H. CRISP, 1989. Water chemistry characteristics of receiving streams and the occurrence ofChironomus riparius and other Chironomidae in Kansas. Acta Biol. Debrecina Oecol. Hungarica, 3: 115–126.Google Scholar
  39. FINGER, S.E., E.F. LITTLE, M.G. HENRY, J.F. FAIRCHILD and T.P. BOYLE, 1985. Comparison of laboratory and field assessment of fluorene — Part I: Effects of fluorene on the survival, growth, reproduction, and behavior of aquatic organisms in laboratory tests. In: T.P. Boyle, ed., Validation and Predictability of Laboratory Methods for Assessing the Fate and Effects of Contaminants in Aquatic Ecosystems. ASTM STP 865. American Society for Testing and Materials, Philadelphia, p. 120–133.Google Scholar
  40. FISHER, D.J., D.T. BURTON and R.L. PAULSON, 1990. Acute toxicity of a complex mixture of synthetic hexachloroethane (HC) smoke combustion products: I. Comparative toxicity to freshwater aquatic organisms. Environ. Toxicol. Chem., 9: 745–754.Google Scholar
  41. FRANCO, P.J., K.L. DANIELS, R.M. CUSHMAN and G.A. KAZLOW, 1984. Acute toxicity of a synthetic oil, aniline and phenol to laboratory and natural populations of chironomid (Diptera) larvae. Environ. Pollut. (Ser. A), 34: 321–331.Google Scholar
  42. FRY, D.M. and S.W. FISHER, 1990. Effect of sediment contact and uptake mechanisms on accumulation of three chlorinated hydrocarbons in the midge,Chironomus riparius. Bull. Environ. Contam. Toxicol., 44: 790–797.Google Scholar
  43. GERSTMEIER, R., 1989. Lake typology and indicator organisms in application to the profundal chironomid fauna of Starnberger See (Diptera, Chironomidae). Arch. Hydrobiol., 116: 227–234.Google Scholar
  44. GIESY, J.P., 1988. Clinical indicators of stress-induced changes in aquatic organisms. Verh. Internat. Verein. Limnol., 23: 1610–1618.Google Scholar
  45. GIESY, J.P., R.L. GRANEY, J.L. NEWSTED, C.J. ROSIU, A. BENDA, R.G. KREIS, Jr., and F.J. HORVATH, 1988. Comparison of three sediment bioassay methods using Detroit River sediments. Environ. Toxicol. Chem., 7: 483–498.Google Scholar
  46. GRANEY, R.L. and J.P. GIESY, Jr., 1986. Effects of long-term exposure to pentachlorophenol on the free amino acid pool and energy reserves of the freshwater amphipodGammarus pseudolimnaeus Bousfield (Crustacea, Amphipoda). Ecotoxicol. Environ. Safety, 12: 233–251.Google Scholar
  47. GRANEY, R.L. and J.P. GIESY, Jr., 1987. The effect of short-term exposure to pentachlorophenol and osmotic stress on the free amino acid pool of the freshwater amphipodGammarus pseudolimnaeus Bousfield. Arch. Environ. Contam. Toxicol., 16: 167–176.Google Scholar
  48. GRANEY, R.L. and J.P. GIESY, Jr., 1988. Alterations in the oxygen consumption, condition index and concentration of free amino acids inCorbicula fluminea (Mollusca: Pelecypoda) exposed to sodium dodecyl sulfate. Environ. Toxicol. Chem., 7: 301–315.Google Scholar
  49. HAMILTON, A.L. and O.A. SÆTHER, 1971. The occurrence of characteristic deformities in the chironomid larvae of several Canadian lakes. Can. Entomol., 103: 363–368.Google Scholar
  50. HANSEN S.R. and R.R. GARTON, 1982. The effects of diflubenzuron on a complex laboratory stream community. Arch. Environ. Contam. Toxicol., 11: 1–10.Google Scholar
  51. HARE, L. and J.C.H. CARTER, 1976. The distribution ofChironomus (s.s.)?cucini (salinarius group) larvae (Diptera: Chironomidae) in Parry Sound, Georgian Bay, with particular reference to structural deformities. Can. J. Zool., 54: 2129–2134.Google Scholar
  52. HATAKEYAMA, S., 1987. Chronic effects of Cd on reproduction ofPolypedilum nubifer (Chironomidae) through water and food. Environ. Pollut., 48: 249–261.Google Scholar
  53. HATAKEYAMA, S. and M. YASUNO, 1981. A method for assessing chronic effects of toxic substances on the midge,Paratanytarsus parthenogeneticus-effects of copper. Arch. Environ. Contam. Toxicol., 10: 705–713.Google Scholar
  54. HAVAS, M. and T.C. HUTCHINSON, 1982. Aquatic invertebrates from the Smoking Hills, N.W.T.: effects of pH and metal on mortality. Can. J. Fish. Aquat. Sci., 39: 890–903.Google Scholar
  55. HEINIS, F. and W.R. SWAIN, 1986. Impedance conversion as a method of research for assessing behavioural responses of aquatic invertebrates. Hydrobiol. Bull., 19: 183–192.Google Scholar
  56. HEINIS, F., K.R. TIMMERMANS and W.R. SWAIN, 1990. Short-term sublethal effects of cadmium on the filter feeding chironomid larvaGlyptotendipes pallens (Meigen) (Diptera). Aquat. Toxicol., 16:73–86.Google Scholar
  57. HILSENHOFF, W.L., 1982. Using a biotic index to evaluate water quality in streams. Technical Bulletin 132. Department of Natural Resources, Madison, WI, 22 p.Google Scholar
  58. HILSENHOFF, W.L., 1988. Rapid field assessment of organic pollution with a family-level biotic index. J. N. Amer. Benthol. Soc., 7:65–68.Google Scholar
  59. HUCKINS, J.N., J.D. PETTY and D.C. ENGLAND, 1986. Distribution and impact of trifluralin, atrazine, and fonofos residues in microcosms simulating a northern prairie wetland. Chemosphere, 15:563–588.Google Scholar
  60. JOHNSON, R.K., 1989. Classification of profundal chironomid communities in oligotrophic/humic lakes of Sweden using environmental data. Acta Biol. Debrecina Oecol. Hungarica, 3: 167–175.Google Scholar
  61. JOHNSON, R.K., T. WIEDERHOLM and L. ERIKSSON, 1990. The influence of season on the classification and ordination of profundal communities of nutrient poor, oligo-mesohumic Swedish lakes using environmental data. Verh. Internat. Verein. Limnol., 24:646–652.Google Scholar
  62. JOHNSON, R.K., T. WIEDERHOLM and D. M. ROSENBERG, 1993. Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In: D.M. Rosenberg and V.H. Resh, eds., Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, p. 40–158.Google Scholar
  63. JULIN, A.M. and H.O. SANDERS, 1978. Toxicity of the IGR, diflubenzuron, to freshwater invertebrates and fishes Mosquito News, 38:256–259.Google Scholar
  64. KANSANEN, P.H., 1985. Assessment of pollution history from recent sediments in Lake Vanajavesi, southern Finland. II. Changes in the Chironomidae, Chaoboridae and Ceratopogonidae (Diptera) fauna. Ann. Zool. Fennici, 22:57–90.Google Scholar
  65. KANSANEN, P.H., 1986. Information value of chironomid remains in the uppermost sediment layers of a complex lake basin. Hydrobiologia, 143:159–165.Google Scholar
  66. KANSANEN, P.H., J. AHO and L. PAASIVIRTA, 1984. Testing the benthic lake type concept based on chironomid associations in some Finish lakes using multivariate statistical methods. Ann. Zool. Fennici, 21:55–76.Google Scholar
  67. KOEHN, T. and C. FRANK, 1980. Effect of thermal pollution on the chironomid fauna in an urban channel. In: D.A. Murray, ed., Chironomidae. Ecology, Systematics, Cytology and Physiology. Proceedings of the 7th International Symposium on Chrironomidae, Dublin, August, 1979. Pergamon Press, Oxford, p. 187–194.Google Scholar
  68. KOLKWITZ, R. and M. MARSSON, 1909. Ökologie der tierischen Saprobien. Beiträge zur Lehre von der biologischen Gewässerbeurteilung. Int. Revue ges. Hydrobiol. Hydrogr., 2:126–152.Google Scholar
  69. KOSALWAT, P. and A. W. KNIGHT, 1987a. Chronic toxicity of copper to a partial life cycle of the midgeChrinomus decorus. Arch. Environ. Contam. Toxicol., 16:283–290.Google Scholar
  70. KOSALWAT, P. and A. W. KNIGHT, 1987b. Acute toxicity of aqueous and substrate-bound copper to the midge,Chironomus decorus. Arch. Environ. Contam. Toxicol., 16:275–282.Google Scholar
  71. KRANTZBERG, G. and P.M. STOKES, 1988. The importance of surface adsorption and pH in metal accumulation by chironomids. Environ. Toxicol. Chem., 7:653–670.Google Scholar
  72. LENAT, D.R., 1988. Water quality assessment of streams using a qualitative collection method for benthic macroinvertebrates. J. N. Amer. Benthol. Soc., 7:222–233.Google Scholar
  73. LOHNER, T.W. and S.W. FISHER, 1990. Effects of pH and temperature on the acute toxicity and uptake of carbaryl in the midge,Chironomus riparius. Aquat. Toxicol., 16:335–354.Google Scholar
  74. MACKEY, A.P., 1977. Growth and development of larval Chironomidae. Oikos, 28:270–275.Google Scholar
  75. MAIER, K.J. and A.W. KNIGHT, 1991. The toxicity of waterborne boron toDaphnia magna andChironomus decorus and the effects of water hardness and sulphate on boron toxicity. Arch. Environ. Contam. Toxicol., 20:282–287.Google Scholar
  76. MAKI, A.W., K.W. STEWART and J.K.G. SILVEY, 1973. The effects of Dibrom on respiratory activity of the stonefly,Hydroperla crosbyi, hellgrammite,Corydalus cornutus and the golden shiner,Notemigonus crysoleucas. Trans. Amer. Fish. Soc., 102:806–815.Google Scholar
  77. MARSHALL, K.E., 1993. The literature of biomonitoring. In: D.M. Rosenberg and V.H. Resh, eds., Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, p. 28–39.Google Scholar
  78. MATTHEWS, R.A., A.L. BUIKEMA, Jr., J. CAIRNS, Jr. and J.H. RODGERS, Jr., (1982). Biological monitoring. Part IIA — Receiving system functional methods, relationships and indices. Water Res., 16:129–139Google Scholar
  79. MERILÄINEN, J.J., 1987. The profundal zoobenthos used as an indicator of the biological condition of Lake Päijänne. Biological Research Report, University of Jyväskylä, 10:87–94.Google Scholar
  80. METCALFE, J.L. and A. MUDROCH, 1987. Distribution of arsenic and mercury in zoobenthos from the Shubenacadie River headwater lakes in Nova Scotia. In: J.S.S. Lakshminarayana, ed., Proceedings of the 13th Annual Aquatic Toxicity Workshop, Moncton, NB, November 12–14, 1986. Can. Techn. Rep. Fish. Aquat. Sci., 1575, p. 85–87.Google Scholar
  81. NEBEKER, A.V., M.A. CAIRNS and C.M. WISE, 1984. Relative sensitivity ofChironomus tentans life stages to copper. Environ. Toxicol. Chem., 3:151–158.Google Scholar
  82. NEBEKER, A.V. and F.A. PUGLISI, 1974. Effect of polychiorinated biphenyls (PCB's) on survival and reproduction ofDaphnia, Gammarus, andTanytarsus. Trans. Amer. Fish. Soc., 103:722–728.Google Scholar
  83. NORRIS, R.H. and A. GEORGES, 1993. Analysis and interpretation of benthic macroinvertebrate surveys. In: D.M. Rosenberg and V.H. Resh, eds., Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, p. 234–286.Google Scholar
  84. ODUM, E.P., 1985. Trends expected in stressed ecosystems. Bio-Science., 35:419–422.Google Scholar
  85. PALAWSKI, D.U., J.B. HUNN, D.N. CHESTER and R.H. WIEDMEYER, 1989. Interactive effects of acidity and aluminium exposure on the life cycle of the midgeChironomus riparius (Diptera). J. Freshwat. Ecol., 5:155–162.Google Scholar
  86. PETTIGROVE, V., 1989. Larval mouthpart deformities inProcladius paludicola Skuse (Diptera: Chironomidae) from the Murray and Darling rivers. Australia. Hydrobiologia, 179:111–117.Google Scholar
  87. PITTINGER, C.A., D.M. WOLTERING and J.A. MASTERS, 1989. Bioavailability of sediment-sorbed and aqueous surfactants toChironomus riparius (midge). Environ. Toxicol. Chem., 8:1023–1033.Google Scholar
  88. PLAFKIN, J.L., M.T. BARBOUR, K.D. PORTER, S.K. GROSS and R.M. HUGHES, 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. EPA/444/4-89-001. United States Environmental Protection Agency, Washington, DC.Google Scholar
  89. PONTASCH, K.W. and J. CAIRNS, Jr., 1991. Multispecies toxicity tests using indigenous organisms: predicting the effects of complex effluents in streams. Arch. Environ. Contam. Toxicol., 20:103–112.Google Scholar
  90. RADDUM, G.G., A. FJELLHEIM and T. HESTHAGEN 1980. Monitoring of acidification by the use of aquatic organisms. Verh. Internat. Verein. Limnol., 23:2291–2297.Google Scholar
  91. RADDUM, G.G. and O.A. SÆTHER, 1981. Chironomid communities in Norwegian lakes with different degrees of acidification. Verh. Internat. Verein. Limnol., 21:399–405.Google Scholar
  92. RADWAN, S., W. KOWALIK and R. KORNIJÓW, 1990. Accumulation of heavy metals in a lake ecosystem. Sci. Total Environ., 96:121–129.Google Scholar
  93. RAND, G.M., 1985. Behavior. In: G. M. Rand and S. R. Petrocelli, eds., Fundamentals of Aquatic Toxicology. Methods and Applications. Hemisphere Publishing Corporation, Washington, DC, p. 221–263.Google Scholar
  94. RESH, V.H. and J.K. JACKSON, 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. In: D. M. Rosenberg and V. H. Resh, eds., Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, p. 195–233.Google Scholar
  95. FESH, V.H. and E.P. MCELRAVY, 1993. Contemporary quantitative approaches to biomonitoring using benthic macroinvertebrates. In: D.M. Rosenberg and V.H. Resh, eds., Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, p. 159–194.Google Scholar
  96. ROSENBERG, D.M. and V.H. RESH, 1993a. Introduction to freshwater biomonitoring and benthic macroinvertebrates. In: D.M. Rosenberg and V.H. Resh, eds., Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, p. 1–9.Google Scholar
  97. ROSENBERG, D.M. and V.H. RESH, eds., 1993b. Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York.Google Scholar
  98. ROSENBERG, D.M. and A.P. WIENS, 1976. Community and species responses of Chironomidae (Diptera) to contamination of fresh waters by crude oil and petroleum products, with special reference to the Trail River, Northwest Territories. J. Fish. Res. Bd. Can., 33:1955–1963.Google Scholar
  99. SÆTHER, O.A., 1979. Chironomid communities as water quality indicators. Holarct. Ecol., 2:65–74.Google Scholar
  100. SALÁNKI, J., K.V. BALOGH and E. BERTA, 1982. Heavy metals in animals of Lake Balaton. Water Res., 16:1147–1152.Google Scholar
  101. SCHINDLER, D.W., 1987. Detecting ecosystem responses to anthropogenic stress. Can. J. Fish. Aquat. Sci., 44 (Suppl. 1):6–25.Google Scholar
  102. SCHINDLER, D.W., 1988. Experimental studies of chemical stressors on whole lake ecosystems. Verh. Internat. Verein. Limnol., 23:11–41.Google Scholar
  103. SCHINDLER, D.W., 1990. Experimental perturbations of whole lakes as tests of hypotheses concerning ecosystem structure and function. Oikos, 57:25–41.Google Scholar
  104. SCHINDLER, D.W., K.H. MILLS, D.F. MALLEY, D.L. FINDLAY, J.A. SHEARER, I.J. DAVIES, M.A. TURNER G.A. LINSEY and D.R. CRUIKSHANK 1985. Long-term ecosystem stress: the effects of years of experimental acidification on a small lake. Science, 228:1395–1401.Google Scholar
  105. SELBY, D.A., J.M. IHNAT and J.J. MESSER, 1985. Effects of subacute cadmium exposure on a hardwater mountain stream microcosm. Water Res., 19:645–655.Google Scholar
  106. SMOCK, L.A., 1983. The influence of feeding habits on whole-body metal concentrations in aquatic insects. Freshwat. Biol., 13:301–311.Google Scholar
  107. SMOL, J.P., I.R. WALKER and P.R. LEAVITT, 1991. Paleolimnology and hindcasting climatic trends Verh. Internat. Verein. Limnol., 24:1240–1246.Google Scholar
  108. STEPHENSON, R.R. and D.F. KANE, 1984. Persistence and effects of chemicals in small enclosures in ponds. Arch. Environ. Contam. Toxicol., 13:313–326.Google Scholar
  109. THIENEMANN, A., 1922. Die beiden Chironomusarten der Tiefenfauna der norddeutschen Seen. Ein hydrobiologisches Problem. Arch. Hydrobiol., 13:609–646.Google Scholar
  110. THORNTON, K. and J. WILHM, 1974. The effects of pH, phenol, and sodium chloride on survival and caloric, lipid, and nitrogen content of a laboratory population ofChironomus attentuatus (Walk.). Hydrobiologia, 45:261–280.Google Scholar
  111. THORNTON, K.W. and J.L. WILHM, 1975. The use of life tables in demonstrating the effects of pH, phenol, and NaCl onChironomus attenuatus populations. Environ. Entomol., 4:325–328.Google Scholar
  112. WALKER, I.R., 1993. Paleolimnological biomonitoring using freshwater benthic macroinvertebrates. In: D.M. Rosenberg and V.H. Resh, eds., Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, p. 306–343.Google Scholar
  113. WALKER, I.R. and R.W. MATHEWES, 1987. Chironomidae (Diptera) and postglacial climate at Marion Lake, British Columbia, Canada. Quaternary Res., 27:89–102.Google Scholar
  114. WALKER, I.R. and R.W. MATHEWES, 1989. Much ado about dead Diptera. J. Paleolimnol., 2:19–22.Google Scholar
  115. WARWICK, W.F., 1980a. Palaeolimnology of the Bay of Quinte, Lake Ontario: 2800 years of cultural influence. Can. Bull. Fish. Aquat. Sci., 206:1–117.Google Scholar
  116. WARWICK, W.F., 1980b. Pasqua Lake, southeastern Saskatchewan: a preliminary assessment of trophic status and contamination based on the Chironomidae (Diptera). In: D.A. Murray, ed., Chironomidae. Ecology, Systematics, Cytology and Physiology. Proceedings of the 7th International Symposium on Chironomidae, Dublin, August, 1979. Pergamon Press, Oxford, p. 255–267.Google Scholar
  117. WARWICK, W.F., 1985. Morphological abnormalities in Chironomidae (Diptera) larvae as measures of toxic stress in freshwater ecosystems: indexing antennal deformities inChironomus Meigen. Can. J. Fish. Aquat. Sci., 42:1881–1914.Google Scholar
  118. WARWICK, W.F., 1989. Morphological deformities in larvae ofProcladius Skuse (Diptera: Chironomidae) and their biomonitoring potential. Can. J. Fish. Aquat. Sci., 46:1255–1271.Google Scholar
  119. WARWICK, W.F., J. FITCHKO, P.M. MCKEE, D.R. HART and A.J. BURT, 1987. The incidence of deformities inChironomus spp. from Port Hope Harbour, Lake Ontario. J. Gr. Lakes Res., 13:88–92.Google Scholar
  120. WARWICK, W.F. and N.A. TISDALE, 1988. Morphological deformities inChironomus, Cryptochironomus, andProcladius larvae (Diptera: Chironomidae) from two differentially stressed sites in Tobin Lake, Saskatchewan. Can. J. Fish. Aquat. Sci., 45:1123–1144.Google Scholar
  121. WEGNER, G.S. and R.W. HAMILTON, 1976. Effect of calcium sulfide onChironomus riparius (Diptera: Chironomidae) egg hatchability. Environ. Entomol., 5:256–258.Google Scholar
  122. WENTSEL, R., A. MCINTOSH and G. ATCHISON, 1977. Sublethal effects of heavy metal contaminated sediment on midge larvae (Chironomus tentans). Hydrobiologia, 56:153–156.Google Scholar
  123. WENTSEL, R., A. MCINTOSH and W.P. MCCAFFERTY, 1978. Emergence of the midgeChironomus tentans when exposed to heavy metal contaminated sediment. Hydrobiologia, 57:195–196.Google Scholar
  124. WIEDERHOLM, T., 1976. Chironomids as indicators of water quality in Swedish lakes. Naturvårdsverkets Limnologiska Undersökningar, 10:1–17.Google Scholar
  125. WIEDERHOLM, T., 1980. Use of benthos in lake monitoring. J. Water Pollut. Contr. Fed., 52:537–547.Google Scholar
  126. WIEDERHOLM, T., ed., 1983. Chironomidae of the Holarctic Region. Keys and Diagnoses. Part 1 — Larvae. Entomologica scandinavica Supplement, 19.Google Scholar
  127. WIEDERHOLM, T., 1984a. Incidence of deformed chironomid larvae (Diptera: Chironomidae) in Swedish lakes. Hydrobiologia, 109:243–249.Google Scholar
  128. WIEDERHOLM, T., 1984b. Responses of aquatic insects to environmental pollution. In: V.H. Resh and D.M. Rosenberg, eds., The Ecology of Aquatic Insects. Praeger, New York, p. 508–557.Google Scholar
  129. WIEDERHOLM, T., ed., 1986. Chironomidae of the Holarctic Region. Keys and Diagnoses. Part 2 — Pupae. Entomologica scandinavica Supplement, 28.Google Scholar
  130. WIEDERHOLM, T., 1989. Chironomidae of the Holarctic Region. Keys and Diagnoses. Part 3 — Adult Males. Entomologica scandinavica Supplement, 34.Google Scholar
  131. WILLIAMS, K.A., D.W.J. GREEN, D. PASCOE and D.E. GOWER, 1987. Effect of cadmium on oviposition and egg viability inChironomus riparius (Diptera: Chironomidae). Bull. Environ. Contam. Toxicol., 38:86–90.Google Scholar
  132. WILSON, R.S., 1989. The modification of chironomid pupal assemblages by sewage effluent in rivers within the Bristol Avon catchment, England. Acta Biol. Debrecina Oecol. Hungarica, 3:367–376.Google Scholar
  133. WILSON, R.S. and J.D. MCGILL, 1977. A new method of monitoring water quality in a stream receiving sewage effluent, using chironomid pupal exuviae. Water Res., 11:959–962.Google Scholar
  134. WINNER, R.W., M.W. BOESEL and M.P. FARRELL, 1980. Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Can. J. Fish. Aquat. Sci., 37:647–655.Google Scholar
  135. WRIGHT, J.F., P.D. ARMITAGE, M.T. FURSE and D. MOSS, 1988. A new approach to the biological surveillance of river quality using macroinvertebrates. Verh. Internat. Verein. Limnol., 23:1548–1552.Google Scholar
  136. YASUNO, M. and K. SATAKE, 1990. Effects of diflubenzuron and methoprene on the emergence of insects and their density in an outdoor experimental stream. Chemosphere, 21:1321–1335.Google Scholar
  137. YASUNO, M., Y. SUGAYA and T. IWAKUMA, 1985. Effects of insecticides on the benthic community in a model stream. Environ. Pollut. (Ser. A), 38:31–43.Google Scholar
  138. ZISCHKE, J.A., J.W. ARTHUR, K.J. NORDLIE, R.O. HERMANUTZ, D.A. STANDEN and T.P. HENRY, 1983. Acidification effects on macro-invertebrates and fathead minnows (Pimephales promelas) in outdoor experimental channels. Water. Res., 17:47–63.Google Scholar

Copyright information

© Netherlands Hydrobiological Society 1992

Authors and Affiliations

  • David M. Rosenberg
    • 1
  1. 1.Department of Fisheries and OceansFreshwater InstituteWinnipegCanada

Personalised recommendations