Chromosome Research

, Volume 4, Issue 3, pp 207–213 | Cite as

How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences?

  • Uta Pich
  • Jörg Fuchs
  • Ingo Schubert
Technical Viewpoint

Abstract

TheArabidopsis-type telomeric repeats (5′-TTTAGGG-3′) are highly conserved. In most families of different plant phyla they represent the basic sequence of telomeres that stabilize and protect the chromosome termini. The results presented here show that Alliaceae and some related liliaceous species have no tandemly repeated TTTAGGG sequences. Instead, their chromosomes reveal highly repetitive satellite and/or rDNA sequences at the very ends. These apparently substitute the original plant telomeric sequences in Alliaceae. Both sequence types are very active in homologous recombination and may contribute to the stabilization of chromosome termini via compensation of replication-mediated shortening.

Key words

Alliaceae rDNA satellite DNA telomeric sequences 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnes SR, James AM, Jamieson G (1985) The organisation, nucleotide sequence, and chromosomal distribution of a satellite DNA fromAllium cepa.Chromosoma 92: 185–192.CrossRefGoogle Scholar
  2. Biessmann H, Mason JM (1992) Genetics and molecular biology of telomeres.Adv Genet 30: 185–249.PubMedGoogle Scholar
  3. Bougourd SM, Parker JS (1976) Nucleolar-organiser polymorphism in natural populations ofAllium schoenoprasum.Chromosoma 56: 301–307.CrossRefGoogle Scholar
  4. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal Biochem 132: 6–13.CrossRefPubMedGoogle Scholar
  5. Fuchs J, Schubert I (1995) Localization of seed protein genes on metaphase chromosomes ofVicia faba via fluorescentin situ hybridization.Chrom Res 3: 94–100.CrossRefPubMedGoogle Scholar
  6. Fuchs J, Brandes A, Schubert I (1995) Telomere sequence localization and karyotype evolution in higher plants.Plant Syst Evol 196; 227–241.CrossRefGoogle Scholar
  7. Fussell CP (1975) The position of interphase chromosomes and late replicating DNA in centromere and telomere regions ofAllium cepa L.Chromosoma 50: 201–210.CrossRefGoogle Scholar
  8. Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR.Nucleic Acids Res 19: 4780.PubMedGoogle Scholar
  9. Irifune K, Hirai K, Zheng J, Tanaka R, Morikawa H (1995) Nucleotide sequence of a highly repeated DNA sequence and its chromosomal localization inAllium fistulosum.Theor Appl Genet 90: 312–316.CrossRefGoogle Scholar
  10. Mason JM, Biessmann H (1995) The unusual telomeres ofDrosophila.Trends Genet 11: 58–62.CrossRefPubMedGoogle Scholar
  11. Okazaki S, Tsuchida K, Maekawa H, Ishikawa H, Fujiwara H (1993) Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkwormBombyx mori and in other insects.Mol Cell Biol 13: 1424–1432.PubMedGoogle Scholar
  12. Pich U, Schubert I (1993a) Polymorphism of legumin genes in inbred lines ofVicia faba.Biol Zentbl 112: 342–350.Google Scholar
  13. Pich U, Schubert I (1993b) Midiprep method for isolation of DNA from plants with a high content of polyphenolics.Nucleic Acids Res 21: 3328.PubMedGoogle Scholar
  14. Pich U, Houben A Fuchs J, Schubert I (1994) Utility of DNA amplified by degenerate oligonucleotide-primed PCR (DOP-PCR) from the total genome and defined chromosomal regions of field bean.Mol Gen Genet 243: 173–177.PubMedGoogle Scholar
  15. Pich U, Fritsch R, Schubert I (1996) Closely relatedAllium species share a very similar satellite sequence.Plant Syst Evol (in press).Google Scholar
  16. Richards EJ, Ausubel FM (1988) Isolation of a higher eukaryotic telomere fromArabidopsis thaliana.Cell 53: 127–136.CrossRefPubMedGoogle Scholar
  17. Ricroch A, Peffley EB, Baker RJ (1992) Chromosomal location of rDNA inAllium: in situ hybridization using biotin-labelled and fluorescein-labelled probe.Theor Appl Genet 83 413–418.CrossRefGoogle Scholar
  18. Rovira C, Beermann W, Edström J-E (1993) A repetitive DNA sequence associated with the centromeres ofChironomus pallidivittatus.Nucleic Acids Res 21: 1775–1781.PubMedGoogle Scholar
  19. Saiga H, Edström J-E (1985) Long tandem arrays of complex repeat units inChironomus telomeres.EMBO J,4: 799–804.PubMedGoogle Scholar
  20. Sato S (1981) Cytological studies on the satellited chromosomes ofAllium cepa.Caryologia 34: 431–440.Google Scholar
  21. Schubert I (1984) Mobile nucleolus organizing regions (NORs) inAllium (Liliaceae s. lat.)? — Inferences from the specificity of silver staining.Plant Syst Evol 144: 291–305.CrossRefGoogle Scholar
  22. Schubert I, Wobus U (1985)In situ hybridization confirms jumping nucleolus organizing regions inAllium.Chromosoma 92: 143–148.CrossRefGoogle Scholar
  23. Schubert I, Ohle H, Hanelt P (1983) Phylogenetic conclusions from Giemsa banding and NOR staining in top onions (Liliaceae).Plant Syst Evol 143: 245–256.CrossRefGoogle Scholar
  24. Yakura K, Tanifuji S (1983) Molecular cloning and restriction analysis ofEcoRI-fragments ofVicia faba rDNA.Plant Cell Physiol 24: 1327–1330.Google Scholar
  25. Young BS, Pession A, Traverse KL, French C, Pardue ML (1983) Telomere regions inDrosophila share complex DNA sequences with pericentric heterochromatin.Cell 34: 85–94.CrossRefPubMedGoogle Scholar
  26. Zhang Y-J, Kamnert I, López CC, Cohn M, Edström J-E (1994) A family of complex tandem repeats in the telomeres ofChironomus pallidivittatus.Mol Cell Biol 14: 8028–8036.PubMedGoogle Scholar

Copyright information

© Rapid Science Publishers 1996

Authors and Affiliations

  • Uta Pich
    • 1
  • Jörg Fuchs
    • 1
  • Ingo Schubert
    • 1
  1. 1.Institut für Pflanzengenetik und KulturpflanzenforschungGatersleben

Personalised recommendations