Chromosome Research

, Volume 4, Issue 1, pp 24–28 | Cite as

Preparation of tomato meiotic pachytene and mitotic metaphase chromosomes suitable for fluorescencein situ hybridization (FISH)

  • Xiao-Bo Zhong
  • J. Hans de Jong
  • Pim Zabel


Fluorescencein situ hybridization (FISH) is an increasingly powerful tool with a variety of applications in both basic and applied research. With excellent genetic, cytogenetic and molecular maps available, the tomato genome provides a good model to benefit from the full potential of FISH. Tomato chromosomes at mitotic metaphase are small and not particularly suitable for high-resolution FISH. In contrast, chromosomes at meiotic pachytene are about 15 times longer, and easier to identify by their differences in chromosome arm lengths and chromomere pattern. We have developed a technique for preparing chromosomal spreads of young pollen mother cells at midprophase I which is suitable for FISH. In a first series of experiments, the hybridization patterns of three classes of repetitive DNA sequences were studied in single and multicolour FISH.

Key words

fluorescencein situ hybridization pachytene metaphase repetitive sequences tomato 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albini SM, Schwarzacher T (1992)In situ localization of two repetitive DNA sequences to surface-spread pachytene chromosomes of rye.Genome 35: 551–559.Google Scholar
  2. Ganal MW, Lapitan NLV, Tanksley SD (1988) A molecular and cytogenetic survey of major repeated DNA sequences in tomato (Lycopersicon esculentum)Mol Gen Genet 213: 262–268.Google Scholar
  3. Heppell-Parton AC, Albertson DG, Fishpool R, Rabbitts PH (1994) Multicolour fluorescencein situ hybridization to order small, single copy probes on metaphase chromosomes.Cytogenet Cell Genet 66: 42–47.Google Scholar
  4. Heslop-Harrison JS (1991) The molecular cytogenetics of plants.J Cell Sci 100: 15–21.Google Scholar
  5. Inazawa J, Ariyama T, Tokino T et al. (1994) High resolution ordering of DNA markers by multicolour fluorescentin situ hybridization of prophase chromosomes.Cytogenet Cell Genet 65: 130–135.Google Scholar
  6. Jacobsen E, de Jong JH, Kamstra SA, van den Berg PMMM, Ramanna MS (1995) Genomicin situ hybridization (GISH) and RFLP analysis for the identification of alien chromosomes in the backcross progeny of potato (+) tomato fusion hybrids.Heredity 74: 250–257.Google Scholar
  7. Jiang JM, Gill BS (1994) Nonisotopicin situ hybridization and plant genome mapping: the first 10 years.Genome 37: 717–725.Google Scholar
  8. Joos S, Fink TM, Ratsch A, Lichter P (1994) Mapping and chromosome analysis: the potential of fluorescencein situ hybridization.J Biotechnol 35: 135–153.Google Scholar
  9. Khush GS, Rick CM (1968) Cytogenetic analysis of the tomato genome by means of induced deficiencies.Chromosoma 23: 452–484.Google Scholar
  10. Lapitan NLV, Ganal MW, Tanksley SD (1989) Somatic chromosome karyotype of tomato based onin situ hybridization of the TGR1 satellite repeat.Genome 32: 992–998.Google Scholar
  11. Leitch IJ, Leitch AR, Heslop-Harrison JS (1991) Physical mapping of plant DNA sequences by simultaneousin situ hybridization of two differently labelled fluorescent probes.Genome 34: 329–333.Google Scholar
  12. Lichter P, Tang CC, Call K, Hermanson G, Evans GA, Housman D, Ward DC (1990) High resolution mapping of human chromosome 11 byin situ hybridization with cosmid clones.Science 247: 64–69.Google Scholar
  13. Maluszynska J, Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences inArabidopsis thaliana.Plant J 1: 159–166.Google Scholar
  14. Marrone BL, Campbell EW, Anzick SL et al. (1994) Mapping of low-frequency chimeric yeast artificial chromosome libraries from human chromosomes 16 and 21 by fluorescencein situ hybridization and quantitative image analysis.Genomics 21: 202–207.Google Scholar
  15. Moir DT, Dorman TS, Day JC et al. (1994) Toward a physical map of human chromosome 10: isolation of 183 YACs representing 80 loci and regional assignment of 94 YACs by fluorescencein situ hybridization.Genomics 22: 1–12.Google Scholar
  16. Mukai Y, Friebe B, Hatchett JH, Yamamoto M, Gill BS (1993) Molecular cytogenetic analysis of radiation-induced wheat-rye terminal and intercalary chromosomal translocations and the detection of rye chromatin specifying resistance to Hessian fly.Chromosoma 102: 88–95.Google Scholar
  17. Muleris M, Apiou A, Olschwang S, Thomas G Dutrillaux B (1994) Mapping of 18 probes on human chromosome 18 using single and double colour FISH.Cytogenet Cell Genet 65: 82–85.Google Scholar
  18. Parokonny AS, Kenton AY, Gleba YY, Bennett MD (1992) Genome reorganization inNicotiana asymmetric somatic hybrids analysed byin situ hybridization.Plant J 2: 863–874.Google Scholar
  19. Ramanna MS, Prakken R (1967) Structure of and homology between pachytene and somatic metaphase chromosomes of the tomato.Genetica 38: 115–133.Google Scholar
  20. Schwarzacher T, Anamthawat-Jonsson K, Harrison GE et al., (1992a) Genomicin situ hybridization to identify alien chromosomes and chromosome segments in wheat.Theor Appl Genet 84: 778–786.Google Scholar
  21. Schwarzacher T, Heslop-Harrison JS, Anamthawat-Jonsson K, Finch RA, Bennett MD (1992b) Parental genome separation in reconstructions of somatic and premeiotic metaphase ofHordeum vulgare x H. bulbosum.J Cell Sci 101: 13–24.Google Scholar
  22. Selleri L, Eubanks JH, Giovannini M et al., (1992) Detection and characterization of chimeric yeast artificial chromosome clones by fluorescentin situ suppression hybridization.Genomics 14: 536–541.Google Scholar
  23. Tanksley SD, Ganal MW, Prince JP et al. (1992) High density molecular linkage maps of the tomato and potato genomes.Genetics 132: 1141–1160.Google Scholar
  24. Van Blokland R, Van der Geest N, Mol JNM, Kooter JM (1994) Transgene-mediated suppression of chalcone synthase expression inPetunia hybrida results from an increase in RNA turnover.Plant J 6: 861–877.Google Scholar
  25. Weide R, van Wordragen MF, Lankhorst RK et al. (1993) Integration of the classical and molecular linkage maps of tomato chromosome 6.Genetics 135: 1175–1186.Google Scholar
  26. Wiegant J, Ried T, Nederlof P, van der Ploeg M, Tanke HJ, Raap AK (1991)In situ hybridization with fluoresceinated DNA.Nucleic Acids Res 19: 3237–3241.Google Scholar
  27. Wolters AMA, Schoenmarkers HCH, van der Meulen-Muisers JJM et al. (1991) Limited DNA elimination from the irradiated potato parent in fusion products of albinoLycopersicon esculentum andSolanum tuberosum.Theor Appl Genet 83: 225–232.Google Scholar
  28. Wolters AMA, Schoenmarkers HCH, Kamstra S et al. (1994) Mitotic and meiotic irregularities in somatic hybrids ofLycopersicon esculentum andSolanum tuberosum.Genome 37: 726–735.Google Scholar
  29. Van Wordragen MF, Weide R, Liharska T et al. (1994) Genetic and molecular organization of the short arm and pericentromeric region of tomato chromosome 6.Euphytica 79: 169–174.Google Scholar
  30. Xu J, Earle ED (1994) Direct and sensitive fluorescencein situ hybridization of 45s rDNA on tomato chromosomes.Genome 37: 1062–1065.Google Scholar
  31. Zabel P, Meyer D, van de Stolpe Oet al. (1985) Towards the construction of artificial chromosomes for tomato. In: van Vloten-Doting L, Groot GSP, Hall TC, eds.Molecular Form and Function of the Plant Genome, NATO ASI series A,Life Sciences, Vol. 83, pp 609–624.Google Scholar

Copyright information

© Rapid Science Publishers 1996

Authors and Affiliations

  • Xiao-Bo Zhong
    • 1
  • J. Hans de Jong
    • 2
  • Pim Zabel
    • 1
  1. 1.Department of Molecular BiologyWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.Department of GeneticsWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations