Journal of Biomedical Science

, Volume 1, Issue 4, pp 218–223 | Cite as

Recovery of glycosylatedgag virus from mice infected with a glycosylatedgag-negative mutant of moloney murine leukemia virus

  • Rene Chun
  • Hung Fan
Original Paper


Two independent pathways forgag gene expression exist in Moloney murine leukemia virus (M-MuLV). One begins with Pr65gag that is processed and cleaved into the internal structural proteins of the virion. The other pathway begins with the glycosylatedgag polyprotein, gPr80gag. gPr80gag consists of Pr65gag plus additional N-terminal residues and it is glycosylated. A glycosylated-gag-negative mutant of M-MuLV (Ab-X-MLV) was previously constructed and shown to replicate in tissue culture. To test for the importance of glycosylatedgag in vivo, the Ab-X-MLV mutant was inoculated intraperitoneally into newborn NIH Swiss mice. Mutant-infected mice developed typical lymphoblastic lymphomas at rates comparable to wild-type M-MuLV at either high (2 × 104 XC pfu/animal) or low (2 × 102 XC pfu/animal) doses. However, when viral protein expression was examined in the resultant tumors, six out of six mice showed evidence of virus that had recovered gPr80gag expression. These results suggest that glycosylatedgag is important for M-MuLV propagation or leukemogenesis in vivo.

Key Words

Moloney murine leukemia virus Glycosylation gag Glycosylatedgag Retroviruses RNA viruses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brightman BK, Chandy KG, Spencer RH, Gupta S, Pattengale PK, Fan H. Characterization of lymphoid tumors induced by a recombinant murine retrovirus carrying the avian v-myc oncogene: Identification of novel (B-lymphoid) tumors in the thymus. J Immunol 141:2844–2854;1988.PubMedGoogle Scholar
  2. 2.
    Coffin, J. Structure of the retroviral genome. In: Weiss R, Teich N, Varmus H, Coffin J, eds. Molecular Biology of Tumor Viruses: RNA Tumor Viruses. Cold Spring Harbor, Cold Spring Harbor Laboratory, 261–368;1984.Google Scholar
  3. 3.
    Daniel MD, Kirchhoff F, Czajak SC, Sehgal PK, Desrosiers RC. Protective effects of a live attenuated SIV vaccine with a deletion in thenef gene. Science 258:1938–1941;1992.PubMedGoogle Scholar
  4. 4.
    Danos O, Mulligan RC. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci USA 85:6460–6464:1988.PubMedGoogle Scholar
  5. 5.
    Dickson C, Eisenman R, Fan H, Hunter E, Teich N. Protein biosynthesis and assembly. In: Weiss R, Teich N, Varmus H, Coffin J, eds. Molecular Biology of Tumor viruses: RNA Tumor Viruses. Cold Spring Harbor, Cold Spring Harbor Laboratory, 513–648;1984.Google Scholar
  6. 6.
    Edwards SA, Fan H.gag-Related polyproteins of Moloney murine leukemia virus: Evidence for independent synthesis of glycosylated and unglycosylated forms. J Virol 30:551–563;1979.PubMedGoogle Scholar
  7. 7.
    Edwards SA, Fan H. Sequence relationship of glycosylated and unglycosylatedgag polyproteins of Moloney murine leukemia virus. J Virol 35:41–51;1980.PubMedGoogle Scholar
  8. 8.
    Edwards SA, Lin YC, Fan H. Association of murine leukemia virusgag antigen with extracellular matrices in productively infected mouse cells. Virology 116:306–317;1982.CrossRefPubMedGoogle Scholar
  9. 9.
    Evans LH, Cloyd MW. Friend and Moloney murine leukemia viruses specifically recombine with different endogenous retroviral sequences to generate mink cell focus-forming viruses. Proc Natl Acad Sci USA 82:459–463;1985.PubMedGoogle Scholar
  10. 10.
    Evans LH, Dresler S, Kabat D. Synthesis and glycosylation of polyprotein precursors to the internal core proteins of Friend murine leukemia virus. J Virol 24:865–874;1977.PubMedGoogle Scholar
  11. 11.
    Fan H, Chute H, Chao E, Feuerman M. Construction and characterization of Moloney murine leukemia virus mutants unable to synthesize glycosylatedgag polyprotein. Proc Natl Acad Sci USA 80:5965–5969;1983.PubMedGoogle Scholar
  12. 12.
    Fan H, Jaenisch R, MacIsaac P. Low-multiplicity infection of Moloney murine leukemia virus in mouse cells: Effect on number of viral DNA copies and virus production in producer cells. J Virol 28:802–809;1978.PubMedGoogle Scholar
  13. 13.
    Hanecak R, Pattengale PK, Fan H. Addition of substitution of simian virus 40 enhancer sequences into the Moloney murine leukemia virus (M-MuLV) long terminal repeat yields infectious M-MuLV with altered biological properties. J Virol 62:2427–2436;1988.PubMedGoogle Scholar
  14. 14.
    Ji JP, Loeb LA. Fidelity of HIV-1 reverse transcriptase copying RNA in vitro. Biochemistry 31:954–958;1992.CrossRefPubMedGoogle Scholar
  15. 15.
    Kestler HW III, Ringler DJ, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC. Importance of thenef gene for maintenance of high virus loads and for development of AIDS. Cell 65:651–662;1991.CrossRefPubMedGoogle Scholar
  16. 16.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685;1970.CrossRefPubMedGoogle Scholar
  17. 17.
    Lang SM, Weeger M, Stahl-Hennig C, Coulibaly C, Hunsmann G, Muller J, Muller-Hermelink H, Fuchs D, Wachter H, Daniel MM, Desrosiers RC, Fleckenstein, B. Importance ofvpr for infection of rhesus monkeys with simian immunodeficiency virus. J Virol 67:902–912;1993.PubMedGoogle Scholar
  18. 18.
    Ledbetter JA, Nowinski RC, Eisenman RN. Biosynthesis and metabolism of viral proteins expressed on the surface of murine leukemia virus-infected cells. Virology 91:116–129;1978.CrossRefPubMedGoogle Scholar
  19. 19.
    Mulligan RC. The basic science of gene therapy. Science 260:926–932;1993.PubMedGoogle Scholar
  20. 20.
    Prats AC, De Billy G, Wang P, Darlix JL. CUG initiation codon used for the synthesis of a cell surface antigen coded by the murine leukemia virus. J Mol Biol 205:363–372;1989.PubMedGoogle Scholar
  21. 21.
    Roberts JD, Preston BD, Johnston LA, Soni A, Loeb LA, Kunkel TA. Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro. Mol Cell Biol 9:469–476;1989.PubMedGoogle Scholar
  22. 22.
    Rowe WP, Pugh WE, Hartley JW. Plaque assay techniques for murine leukemia viruses. Virology 42:1136–1139;1970.CrossRefPubMedGoogle Scholar
  23. 23.
    Saris CJ, van Eenbergen J, Liskamp RM, Bloemers HP. Structure of glycosylated and unglycosylatedgag andgag-pol precursor proteins of Moloney murine leukemia virus. J Virol 46:841–859;1983.PubMedGoogle Scholar
  24. 24.
    Schultz AM, Lockhart SM, Rabin EM, Oroszlan S. Structure of glycosylated and unglycosylatedgag polyproteins of Rauscher murine leukemia virus: Carbohydrate attachment sites. J Virol 38:581–592;1981.PubMedGoogle Scholar
  25. 25.
    Schultz AM, Oroszlan S. Murine leukemia virusgag polyproteins: The peptide chain unique to Pr80 is located at the amino terminus. Virology 91:481–486;1978.CrossRefPubMedGoogle Scholar
  26. 26.
    Schultz AM, Rabin EH, Oroszlan S. Post-translational modification of Rauscher leukemia virus precursor polyproteins encoded by thegag gene. J Virol 30:255–266;1979.PubMedGoogle Scholar
  27. 27.
    Schwartzberg P, Colicelli J, Goff SP. Deletion mutants of moloney murine leukemia virus which lack glycosylatedgag protein are replication competent. J Virol 46:538–546;1983.PubMedGoogle Scholar
  28. 28.
    Stoye JP, Coffin JM. The four classes of endogenous murine leukemia virus: Structural relationships and potential for recombination. J Virol 61:2659–2669;1987.PubMedGoogle Scholar
  29. 29.
    Takeuchi Y, Nagumo T, Hoshino H. Low fidelity of cell-free DNA synthesis by reverse transcriptase of human immunodeficiency virus. J Virol 62:3900–3902;1988.PubMedGoogle Scholar

Copyright information

© National Science Council 1994

Authors and Affiliations

  • Rene Chun
    • 1
  • Hung Fan
    • 1
  1. 1.Department of Molecular Biology and Biochemistry Cancer Research InstituteUniversity of CaliforniaIrvineUSA

Personalised recommendations