Computing

, Volume 20, Issue 4, pp 343–350 | Cite as

Über A (α)-stabile Verfahren hoher Konsistenzordnung

  • R. D. Grigorieff
  • J. Schroll
Article

Zusammenfassung

Es wird in einer expliziten Konstruktion gezeigt, daß für jedes α ε (0, π/2)A (α)-stabile lineare Mehrschrittverfahren beliebiger Konsistenzordnung existieren. Einige charakteristische Daten der Verfahren und numerische Rechnungen werden angegeben.

On a (α)-stable methods with high order of consistency

Abstract

For each α ε (0, π/2), the existence ofA (α)-stable linear multistep methods with arbitrary order of consistency is shown by an explicit construction. Some characteristic data of the methods and numerical results are given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Cryer, C. W.: A new class of highly-stable method:A 0-stable methods. BIT13, 153–159. (1973).CrossRefGoogle Scholar
  2. [2]
    Dahlquist, G.: A special stability problem for linear multistep methods. BIT3, 27–43 (1963).CrossRefGoogle Scholar
  3. [3]
    Fehlberg, E.: Numerisch stabile Interpolationsformeln mit günstigster Fehlerfortpflanzung für Differentialgleichungen erster und zweiter Ordnung. ZAMM41, 101–110 (1961).Google Scholar
  4. [4]
    Henrici, P.: Discrete variable methods in ordinary differential equations. New York: 1962.Google Scholar
  5. [5]
    Jeltsch, R.: Stiff stability and its relation toA 0- andA (0)=stability. SINUM13, 8–17 (1976).Google Scholar
  6. [6]
    Johnson, A. I., Barney, I.R.: Numerical solution of large systems of stiff ordinary differential equations in a modular simulation framework. In [7].Google Scholar
  7. [8]
    Lindberg, B.: On a dangerous property of methods for stiff differential equations. BIT14, 430–436 (1974).CrossRefGoogle Scholar
  8. [9]
    Liniger, W.: A criterion forA-stability of linear multistep integration formulae. Computing3, 280–285 (1968).CrossRefGoogle Scholar
  9. [10]
    Nørsett, S. P.: A criterion forA (α)-stability of Linear multistep methods. BIT9, 259–263 (1969).CrossRefGoogle Scholar
  10. [11]
    Odeh, F., Liniger, W.: A note on unconditional fixed-h stability of linear multistep formulae. Computing7, 240–253 (1971).Google Scholar
  11. [12]
    Widlund, O. B.: A note on unconditionally stable linear multistep methods. BIT7, 65–70 (1967).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • R. D. Grigorieff
    • 1
  • J. Schroll
    • 1
  1. 1.Fachbereich MathematikTechnische Universität BerlinBerlin 12

Personalised recommendations