Computing

, Volume 34, Issue 4, pp 325–347 | Cite as

On roundoff error distributions in floating point and logarithmic arithmetic

  • J. L. Barlow
  • E. H. Bareiss
Article

Abstract

Probabilistic models of floating point and logarithmic arithmetic are constructed using assumptions with both theoretical and empirical justification. The justification of these assumptions resolves open questions in Hamming (1970) and Bustoz et al. (1979).

These models are applied to errors from sums and inner products.

A comparison is made between the error analysis properties of floating point and logarithmic computers. We conclude that the logarithmic computer has smaller error confidence intervals for roundoff errors than a floating point computer with the same computer word size and approximately the same number range.

AMS Subject Classification

65G Key words and phrases Roundoff error distribution floating point arithmetic logarithmic computers 

Über Rundungsfehlerverteilungen bei Gleitkomma- und logarithmischer Arithmetik

Zusammenfassung

Unter Zugrundelegung von sowohl theoretisch als auch empirisch gerechtfertigter Annahmen wird ein stochastisches Modell der Gleitkomma- und der logarithmischen Arithmetik konstruiert. Die Rechtfertigung dieser Annahmen löst offene Fragen bei Hamming (1970) und Bustoz et al. (1979).

Diese Modelle werden auf die Fehler von Summen und inneren Produkten angewendet.

Es wird ein Vergleich zwischen den Eigenschaften von Gleitkomma- und logarithmischen Rechnern hinsichtlich ihrer Fehleranalyse angestellt. Wir kommen zu dem Schluß, daß der logarithmische Rechner kleinere Fehlerkonfidenzintervalle für die Rundungsfehler aufweist als ein Gleitkommarechner mit der gleichen Wortlänge und dem annähernd gleichen Zahlenbereich.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bareiss, E. H., Barlow, J. L.: Probabilistic error analysis of computer arithmetics. Northwestern University DOE Report COO-2280-37 (December 1978).Google Scholar
  2. Bareiss, E. H., Grau, A. A.: Basics of the CRD computer. Northwestern University ERDA Report COO-2280-35 (August 1977).Google Scholar
  3. Barlow, J. L.: Probabilistic error analysis of floating point and CRD arithmetics. Ph. D. Thesis, Northwestern University, Evanston, Illinois (June 1981 [a]).Google Scholar
  4. Barlow, J. L.: On the distribution of accumulated roundoff error in floating point arithmetic. Proc. Fifth IEEE Symposium on Computer Arithmetic, Ann Arbor, Michigan (1981 [b]).Google Scholar
  5. Barlow, J. L., Bareiss, E. H.: Probabilistic error analysis of Gaussian elimination in floating point and logarithmic arithmetic. Computing34, 349–364 (1985).Google Scholar
  6. Benford, F.: The law of anomalous numbers. Proc. Amer. Phil. Soc.78, 551–572 (1938).Google Scholar
  7. Bustoz, J., Feldstein, A., Goodman, R., Linnainmaa, S.: Improved trailing digit estimates applied to optimal computer arithmetic. JACM26, No. 4, 716–730 (1979).CrossRefGoogle Scholar
  8. Clenshaw, C. W., Olver, F. W. I.: Beyond floating point. JACM31, 319–328 (1984).CrossRefGoogle Scholar
  9. Feldstein, A., Goodman, R.: Convergence estimates for the distribution of trailing digits. JACM23, 287–297 (1976).CrossRefGoogle Scholar
  10. Flehinger, B. J.: On the probability that a random integer has initial digit A. Amer. Math. Monthly73, 105–161 (1966).Google Scholar
  11. Goodman, R., Feldstein, A.: Effects of guard digits and normalization options on floating point multiplications. Computing18, 93–106 (1977).Google Scholar
  12. Goodman, R., Feldstein, A.: Roundoff error in products. Computing15, 263–273 (1975).CrossRefGoogle Scholar
  13. Goodman, R., Feldstein, A.: Loss of significance in floating point subtraction and addition. IEEE Trans. on ComputersC-31 (4), 328–335 (1982).Google Scholar
  14. Grau, A. A., Bareiss, E. H.: Statistical aspects of machine rounding. Northwestern University ERDA Report COO-2280-34 (August 1977).Google Scholar
  15. Hamming, R. W.: On the distribution of numbers. Bell System Technical Journal49, No. 8, 1609–1625 (1970).Google Scholar
  16. Hogg, R. V., Craig, A. T.: Introduction to Mathematical Statistics, Third Edition. New York: Macmillan 1970.Google Scholar
  17. Knuth, D. E.: The art of computer programming, Vol. 2, Second Ed.: Seminumerical Algorithms, pp. 238–250. Reading, Mass.: Addison-Wesley 1981.Google Scholar
  18. Nathan, L. H.: Probabilistic distribution of the most significant digit in computer represented numbers and its behavior under iterated fixed and floating point operations. M. S. Thesis, Northwestern University, Evanston, Illinois (August 1973).Google Scholar
  19. Pinkham, R. S.: On the distribution of first significant digits. Ann. Math. Stat.32, 1223–1230 (1961).Google Scholar
  20. Raimi, R. A.: On the distribution of first significant digits. Amer. Math. Monthly74, No. 2, 342–348 (1969).Google Scholar
  21. Sweeney, D.: An analysis of floating point addition. IBM Systems Journal4, 31–42 (1965).Google Scholar
  22. Turner, P. R.: The distribution of leading significant digits. IMA J. of Num. Anal.2, 407–412 (1982).Google Scholar
  23. Turner, P. R.: Further revelations on l.s.d. IMA J. of Num. Anal.4, 225–231 (1984).Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. L. Barlow
    • 1
  • E. H. Bareiss
    • 2
  1. 1.Computer Science DepartmentThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Electrical Engineering and Computer ScienceNorthwestern UniversityEvanstonUSA

Personalised recommendations