Effects of retinoic acid on NB 69 human neuroblastoma cells and fetal rat mid brain neurons

  • M. A. Mena
  • M. J. Casarejos
  • C. Estrada
  • J. G. de Yebenes
Full Papers


Retinoids are chemical compounds which play important roles in ontogenetic development and cranio-caudal differentiation in animals, but their effect on phenotypic expression of neurotransmitters are unknown. We studied the pharmacological and morphological effects of retinoic acid (RA) on two types of immature vertebrate neurons, the human derived neuroblastoma cells, NB69, and fetal rat mid brain neurons in culture. The pharmacological effects of RA on the cultures and their relation to catecholamine and acetylcholine neurotransmission were evaluated according the levels of catecholamines, tyrosine hydroxylase (TH) activity, TH immunostaining, and choline acetyltransferase (CAT) activity, respectively. RA reduces catecholamine levels and TH activity in NB69 cells and the number of dopamine neurons in cultures derived from rat fetal mid brain. The detrimental effect of RA on mid brain neurons is dose- dependent; limited to TH+ cells at low concentrations (100 to 500 nM) and toxic for all types of cells at high concentrations (1 to 2 μM). RA increases CAT activity in NB 69 cells and produces phenotypic differentiation of these to a more mature neuronal phenotype with more prolonged neurite extensions. Therefore, RA may play a trophic positive role in the differentiation of immature cells to cholinergic neurons; this contrasts with the detrimental effects of RA on catecholamine neurons.


Retinoic acid dopamine acetylcholine neuronal cultures Parkinson's disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anden NE, Carlsson A, Haggendal J (1969) Adrenergic mechanisms. Ann Rev Pharmacol 9: 119–133CrossRefPubMedGoogle Scholar
  2. Beart PM, McDonald D (1980) Neurochemical studies of the mesolimbic dopaminergic pathway: somatodendritic mechanisms and GABAergic neurons in the ventral tegmentum. J Neurochem 34: 1622–1629PubMedGoogle Scholar
  3. Beck KD, Knusel B, Pasinetti G, Michel PP, Zawadzka H, Goldstein M, Hefti F (1991) Tyrosine hydroxylase mRNA expression by dopaminergic neurons in culture: effect of 1-Methyl-4-Phenylpyridinium treatment. J Neurochem 57: 527–532PubMedGoogle Scholar
  4. Brand N, Petkovich M, Krust A, Chambon P, de The H, Marchio A, Tiollais P, Dejean A (1988) Identification of a second human retinoic receptor. Nature 332: 850–853CrossRefPubMedGoogle Scholar
  5. Breitman T, He R (1990) Combinations of retinoic acid with either sodium butyrate, dimethyl sulfoxide, or hexamethylene bisacetamide synergistically induce differentiation of the human myeloid leukemia cell line HL60. Cancer Res 50: 6268–6273PubMedGoogle Scholar
  6. Brockes JP (1989) Retinoids, homebox genes, and limb morphogenesis. Neuron 2: 1285–1294CrossRefPubMedGoogle Scholar
  7. Bulensko Ransby SM, Griffiths CEM, Kimbrough-Green CK, et al (1993) Topical tetinoin (retinoic acid) therapy for hyperpigmented lesions caused by inflammation of the skin in black patients. N Engl J Med 328: 1438–1443CrossRefPubMedGoogle Scholar
  8. Burton KA (1956) Study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J 62: 315–323PubMedGoogle Scholar
  9. Carlsson A, Davis JN, Kehr W, Lindquist M, Atack CV (1972) Simultaneous measurement of tyrosine and tryptophan hydroxylase activities in brain in vivo using an inhibition of the aromatic amino acid decarboxylase. Naunyn Schmiedebergs Arch Pharmacol 275: 153–168CrossRefPubMedGoogle Scholar
  10. Cassel JC, Kelche C, Majchrzak M, Will BE (1992) Factors influencing structure and function of intracerebral grafts in the mammalian brain: a review. Rest Neurol Neurosci 4: 65–96Google Scholar
  11. Cenci MA, Kalen P, Mandel RJ, Wictorin K, Bjorklund A (1992) Dopaminergic transplants normalize amphetamine- and apomorphine-induced fos expression in the 6-hydroxydopamine-lesioned striatum. Neuroscience 46: 943–957CrossRefPubMedGoogle Scholar
  12. Chapman SK (1980) Antitumor effects of vitamin A and inhibitors of ornithine decarboxylase in cultured neuroblastoma and glioma cells. Life Sci 26: 1359–1366CrossRefPubMedGoogle Scholar
  13. Choi HK, Won LA, Kontur PJ, Hammond DN, Fox AP, Wainer BH, Hoffmann PC, Heller A (1991) Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res 552: 67–76CrossRefPubMedGoogle Scholar
  14. Daguet M-C, Di Porzino U, Prochiantz A, Kato A, Glowinski J (1980) Release of dopamine from dissociated mesencephalic dopaminergic neurons in primary cultures in absence or presence of striatal target cells. Brain Res 191: 564–568CrossRefPubMedGoogle Scholar
  15. Dong JM, Li F, Chiu JF (1990) Induction of F9 cell differentiation by transient exposure to retinoic acid. Biochem Biophys Res Commun 170: 147–152CrossRefPubMedGoogle Scholar
  16. Dunnett SB, Annett IE (1991) Nigral transplantation in primate models of Parkinsonism. In: Lindvall O, Bjorklund A, Widner H (eds) Intracerebral transplantation in movement disorders. Elsevier Science Publishers BV, Amsterdam, pp 27–50Google Scholar
  17. Dunnett SB, Bjorklund A (1992) Staging and dissection of rat embryos. In: Dunnett SB, Bjorklund A (eds) Neural transplantation: a practical approach. IRL Press, Oxford, pp 1–18Google Scholar
  18. Durston AJ, Timmermans JPM, Hage WJ, Hendricks HFJ, de Vries NJ, Heideveld M, Nieuwkoop PD (1989) Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340: 140–144CrossRefPubMedGoogle Scholar
  19. Engele J, Bohn MCh (1991) The neurotrophic effects of fibroblasts growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia. J Neurosci 11: 3070–3078PubMedGoogle Scholar
  20. Freed CR, Breeze RE, Rosenberg NL, et al (1992) Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson's disease. N Engl J Med 327: 1549–1555PubMedGoogle Scholar
  21. Fiszman ML, Zuddas A, Masana MI, Barker JL, di Porzio U (1991) Dopamine synthesis precedes dopamine uptake in embryonic rat mesencephalic neurons. J Neurochem 56: 392–399PubMedGoogle Scholar
  22. Galea E, Estrada C (1991) Periendothelial acetylcholine synthesis and release in bovine cerebral cortex capillaries. J Cereb Blood Flow Metb 11: 868–874Google Scholar
  23. Garcia de Yebenes J, Mena MA (1992) Effects of growth factors on catecholamine cells. Behav Pharmacol 3 [Suppl 1]:25Google Scholar
  24. Garcia de Yebenes J, Morales B, Gonzalez Elipe J, Ruiz PG, Mena MA, Sanchez V (1992) Enfermedad de Parkinson. Factores geneticos y factores ambientales. Neurologia 7: 341–342Google Scholar
  25. Garcia de Yebenes J, Mena MA, Pardo B, Casarejos MJ (1993) Vulnerabilidad cellular de los sistemas dopaminergicos. In: Alberca R, Ochoa JJ (eds) Manifestaciones precoces y tratamiento inicial de la enfermedad de Parkinson. Aula Medica, Madrid, pp 13–60Google Scholar
  26. Garg L, Brown JC (1983) Friend erytholeukemia cell differentiation: induction by retinids. Differentiation 25 79–83PubMedGoogle Scholar
  27. Giguere V, Ong ES, Segui P, Evans RM (1987) Identification of a receptor for the morphogen retinoic acid. Nature (London) 330: 624–629CrossRefGoogle Scholar
  28. Granneman JG, Kapatos G (1990) Developmental expression of Go in neuronal cultures from rat mesencephalon and hypothalamus. J Neurochem 54: 1995–2001PubMedGoogle Scholar
  29. Hall A (1991) Retinoic acid and serum modulation of thymosin beta-10 gene expression in rat neuroblastoma cells. J Mol Neurosci 2: 229–237PubMedGoogle Scholar
  30. Hall AK (1992) Influence of cyclic AMP and serum factors upon expression of a retinoid-responsive gene in neuroblastoma cells. J Mol Neurosci 3: 155–163PubMedGoogle Scholar
  31. Haskell BE, Stach RW, Werrbach-Perez K, Perez-Polo JR (1987) Effect of retinoic acid on nerve growth factor receptors. Cell Tissue Res 247: 67–73CrossRefPubMedGoogle Scholar
  32. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulus GD, Squinto SP, Lindsay RM (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 350: 230–232CrossRefPubMedGoogle Scholar
  33. Jetten AM, Jetten MER (1979) Possible role of retinoic acid binding protein in retinoid stimulation of embryonal carcinoma cell differentiation. Nature 278: 180–182CrossRefPubMedGoogle Scholar
  34. Jones-Villeneuve EMV, McBurney MW, Rogers KA, Kalnins VI (1982) Retinoic acid induces embryonal carcinoma cells to differentiate into neurons and glial cells. J Cell Biol 94: 253–262CrossRefPubMedGoogle Scholar
  35. Kadowaki H, Evans JE, Rys-Sikora ER, Koff RS (1990) Effect of differentiation and cell density on glycosphingolipid class and molecular species composition of mouse neuroblastoma NB2a cells. J Neurochem 54: 2125–2137PubMedGoogle Scholar
  36. Levine JM, Flynn P (1986) Cell surface changes accompanying the neural differentiation of an embryonal carcinoma cell line. J Neurosci 6: 3374–3384PubMedGoogle Scholar
  37. Lotan R (1980) Effects of vitamin A and its analogs (retinoids) on normal and neoplastic cells. Biochim Biophys Acta 605: 33–91PubMedGoogle Scholar
  38. Lotan R, Neumann G, Deutsch V (1983) Identification and characterization of specific changes induced by retinoic acid in cell surface glycoconjugates of S91 murine. Cancer Res 43: 303–312PubMedGoogle Scholar
  39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  40. Maden M, Ong DE, Summerbell D, Chytil F (1989) The role of retinoid-binding proteins in the generation of pattern in the developing limb, the regenerating limb and the nervous system. Development [Suppl]:109–119Google Scholar
  41. Makowske M, Ballester R, Cayres Y, Rosen OM (1988) Immunochemical evidence that three protein kinase C isozymes increase in abundance during HL-60 differentiation induced by dimethyl sulfoxide and retinoic acid. J Biol Chem 263: 3402–3410PubMedGoogle Scholar
  42. Matsuoka I, Mizuno N, Kurihara K (1989) Cholinergic differentiation of clonal rat pheocromocytoma cells (PC12) induced by retinoic acid: increase of choline acetyltransferase activity and decrease of tyrosine hydroxylase activity. Brain Res 502: 53–60CrossRefPubMedGoogle Scholar
  43. Mena MA, De Yebenes JG, Dwork A, Latov N, Fahn S, Herbert J (1989) Biochemical properties of monoamine-rich human neuroblastoma cells. Brain Res 486: 286–296CrossRefPubMedGoogle Scholar
  44. Mena MA, Pardo B, Casarejos MJ, Fahn S, de Yebenes JG (1992) Neurotoxicity of levodopa on catecholamine rich human neuroblastoma cells. Mov Dis 5: 62–73Google Scholar
  45. Mena MA, Pardo B, Paino CL, de Yebenes JG (1993) Levodopa toxicity in foetal rat midbrain neurones in culture: modulation by ascorbic acid. Neuro Report 4: 438–440Google Scholar
  46. Mena MA, Pardo B, Casarejos MJ, de Yebenes JG (1994) Neurotrophic factors for the treatments of neurological disorders: model of Parkinson's disease. In: Palomo T, Archer T, Beninger R (eds) Strategies for studying brain disorders, vol 2, chapter 15. Farrand Press, LondonGoogle Scholar
  47. Mitchell PP, Hefti F (1990) Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J Neurosci Res 26: 428–435CrossRefPubMedGoogle Scholar
  48. Mizuno N, Matsuoka I, Kurihara K (1989) Possible involvements of intracellular Ca++ and Ca++ dependent protein phosphorylation in cholinergic differentiation of clonal rat pheocromocytoma cells (PC12) induced by glioma-conditioned medium and retinoic acid. Dev Brain Res 50: 1–10CrossRefGoogle Scholar
  49. Nakamura KD, Hart RW (1989) Proto-oncogene expression during retinoic acid-induced neural differentiation of embryonal carcinoma cells. Mech Ageing Dev 48:53–62CrossRefPubMedGoogle Scholar
  50. O'Malley EK, Black IB, Dreyfus CF (1991) Local support cells promote survival of substantia nigra dopaminergic neurons in culture. Exp Neurol 112: 40–48CrossRefPubMedGoogle Scholar
  51. Petkovich M, Brand NJ, Krust A, Chambon P (1987) A human retinoic acid receptor which elongs to the family of nuclear receptors. Nature 330: 444–450Google Scholar
  52. Ponzoni M, Lanciotti M (1990) Retinoic acid rapidly decreases phosphatidylinositol turnover during neuroblastoma cell differentiation. J Neurochem 54: 540–546PubMedGoogle Scholar
  53. Prashad N, Lotan D, Lotan R (1987) Differential effects of dibutyryl cyclic adenosine monophosphate and retinoic acid on the growth, differentiation, and cyclic adenosine monophosphate-binding protein of murine neuroblastoma cells. Cancer Res 47: 2417–2424PubMedGoogle Scholar
  54. Rabinovsky E, Le WD, McManaman JL (1992) Differential effects of neurotrophic factors on neurotransmitter development in the IMR-32 human neuroblastoma cell line. J Neurosci 12: 171–179PubMedGoogle Scholar
  55. Robson JA, Sidell N (1985) Ultrastructural features of a human neuroblastoma cell line treated with retinoic acid. Neuroscience 14: 1149–1162CrossRefPubMedGoogle Scholar
  56. Rodriguez-Tebar A, Rohrer H (1991) Retinoic acid induces NGF-dependent survival response and high-affinity NGF receptors in immature chick sympathetic neurons. Development 112: 813–820PubMedGoogle Scholar
  57. Schmitt M, Bausero P, Kempf J, Ouirin-Stricker C (1993) Transcriptional regulation of the human acetyltranferase gene. Role of nuclear receptors and FOS/JUN. J Neurochem 61: s176Google Scholar
  58. Sidell N (1982) Retinoic acid-induced growth and morphologic differentiation of human neuroblastoma cells in vitro. J Natl Cancer Inst 68: 589–596PubMedGoogle Scholar
  59. Singh IN, Sorrentino G, McCartney DG, Massarelli R, Kanfer JN (1990) Enzymatic activities during differentation of the human neuroblastoma cells. J Neurosci Res 25: 476–485CrossRefPubMedGoogle Scholar
  60. Spencer DD, Robbins RJ, Naftolin F, et al (1992) Unilateral transplantation of human fetal mesencephalic tissue into the caudate nucleus of patients with Parkinson's disease. N Engl J Med 327: 1541–1548PubMedGoogle Scholar
  61. Stephens R, Rabin S, Greene L, Thiele C, Kaplan DR (1993) Neuronal signal transduction by TRK/NGF receptors. J Neurochem 61: s120PubMedGoogle Scholar
  62. Stevens VL, Owens NE, Winton EF, Kinkade JM, Merrill AH (1990) Modulation of retinoic acid-induced differentiation of human leukemia (HL-600) cells by serum factors and sphinganine. Cancer Res 50: 222–226PubMedGoogle Scholar
  63. Summerbell D, Maden M (1990) Retinoic acid, a developmental signalling molecule. TINS 13: 142–147PubMedGoogle Scholar
  64. The H, Chomienne C, Lanotte M, Degos L, Dejean A (1990) The t(15;17) translocation of acute promylocytic leukaemia fuses the retinoic acid receptor a gene to a novel transcribed locus. Nature 347: 558–561CrossRefPubMedGoogle Scholar
  65. Thiele CJ, Reynolds CP, Israel MA (1985) Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation. Nature 313: 404–406CrossRefPubMedGoogle Scholar
  66. Thiele CJ, Cohen PS, Israel MA (1988) Regulation of c-myb expression in human neuroblastoma cells during retinoic acid-induced differentiation. Mol Cell Biol 8: 1677–1683PubMedGoogle Scholar
  67. Umesono K, Giguere V, Glass CK, Rosenfeld MG, Evans RM (1988) Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 336: 262–669CrossRefPubMedGoogle Scholar
  68. Vanier MC, Banerjee D, Mukherjee BB (1988) Retinoic acid inhibits phospholipid turnover and protein kinase C activity in RA-sensitive but not in RA-resistant cells. FEBS Lett 241: 154–158CrossRefPubMedGoogle Scholar
  69. Widner H, Tetrud J, Rehncrona S, Snow B, Brundin P, Gustavh B, Bjorklund A, Lindvall O, Langston JW (1992) Bilateral fetal mesencephalic grafting in two patients with parkinsonism induced by MPTP. N Engl J Med 327: 1556–1563PubMedGoogle Scholar
  70. Wuarin L, Sidell N, De Vellis J (1990) Retinoids increase perinatal spinal cord neuronal survival and astroglial differentiation. Int J Dev Neurosci 8: 317–326CrossRefPubMedGoogle Scholar
  71. Yoshikawa K, Aizawa T, Maruyama K (1990) Neural differentiation increases expression of Alzheimer amyloid protein precursor gene in murine embryonal carcinoma cells. Biochem Biophys Res Commun 171: 204–209CrossRefPubMedGoogle Scholar
  72. Yu VC, Hochhaus GH, Change FH, Richards ML, Bourne HR, Sadee W (1988) Differentiation of human neuroblastoma cells: Marked potentiation of prostaglandin E-stimulated accumulation of cyclic AMP by retinoic acid. J Neurochem 51: 1892–1899PubMedGoogle Scholar
  73. Zheng ZS, Goldsmith LA (1990) Modulation of epidermal growth factor receptors by retinoic acid. Cancer Res 50: 1201–1205PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. A. Mena
    • 1
  • M. J. Casarejos
    • 1
  • C. Estrada
    • 2
  • J. G. de Yebenes
    • 3
  1. 1.Departamento de Investigacion, Centro Ramon y CajalMadridSpain
  2. 2.Departamento de Fisiologia, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
  3. 3.Servicio de NeurologiaFundacion JimenezMadridSpain

Personalised recommendations