Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Investigation on time scales in a low Reynolds number jet flow using particle-tracking velocimetry

  • 51 Accesses

  • 4 Citations

Abstract

The near flow field of an axisymmetric water jet at Reynolds numbers between 2000 and 5000 is investigated using Particle-Tracking Velocimetry. Measurements are taken in the longitudinal section (along the mean flow) and in cross-sections (orthogonal to the mean flow). From the former, correlation coefficients of the two in-plane velocity components in a Lagrangian framework are obtained: thus Lagrangian integral scales can be computed. Those of the streamwise velocity (axial) component increase on moving away from the centreline, whereas the opposite happens for the vertical velocity (radial) component: integral time scales of the two components are almost equal at the interface between jet and ambient fluids. On the other hand, integral scales are almost constant or increase slightly with the axial direction. In cross-sections, fluid ejection and injection from the jet centreline are observed to be connected to counter-rotating vortices (“mushroom”): their number and size change with Reynolds number in agreement with results from other authors. The maximum ejection velocity (orthogonal to the mean jet flow), at 3 nozzle diameters downstream of the outlet, is found to be one half of the mean outlet velocity.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Schlichting, H.,Boundary Layer Theory. McGraw-Hill (1979).

  2. 2.

    Wygnansky, I. and Fiedler, H.E., Some measurements in the self-preserving jet.Journal of Fluid Mechanics 38 (1969) 577–612.

  3. 3.

    Ashurst, W.T. and Meiburg, E., Three-dimensional shear layers via vortex dynamics.Journal of Fluid Mechanics 189 (1988) 87–116.

  4. 4.

    Dahm, W.J.A. and Dimotakis, P.E., Mixing at large Schmidt number in the self-similar far field of turbulent jets.Journal of Fluid Mechanics 217 (1990) 299–330.

  5. 5.

    Cenedese, A. and Paglialunga, A., Direct digital analysis of a multiexposed photograph in PIV.Experiments in Fluids 8 (1990) 273–280.

  6. 6.

    Adrian, R.J., Particle-imaging techniques for experimental fluid mechanics.Annual Review of Fluid Mechanics 23 (1992) 261–305.

  7. 7.

    Cenedese, A., Doglia, G., Romano, G.P., De Michele, G. and Tanzini, G., LDA and PIV velocity measurements in tree jets.Experimental Thermal and Fluid Science 9 (1994) 125–134.

  8. 8.

    Cenedese, A. and Querzoli, G., Lagrangian study of the convective boundary layer using the image analysis. In:Proceedings of 7th International Symposium on Application of Laser Anemometry to Fluid Mechanics, Lisbon (1994) 22.1.1–6.

  9. 9.

    Agui, J.C. and Jimenez, J., On the performance of particle tracking.Journal of Fluid Mechanics, 185 (1987) 447–468.

  10. 10.

    Spedding, G.R. and Rignot, E.J.M., Performance analysis and application of grid interpolation techniques for fluid flows.Experiments in Fluids 15 (1993) 417–430.

  11. 11.

    Romano, G.P., The use of color in PIV. In:Proceedings of the First International Workshop on PIV, Futui (1995) pp. 143–154.

  12. 12.

    Liepmann, D. and Gharib, M., The role of streamwise vorticity in the near field entrainment ofroundjets.Journal of Fluid Mechanics 245 (1992) 643–668.

  13. 13.

    Metcalfe, R.W., Orszag, S.A., Brachet, M.E., Menon, S. and Riley, J.J., Secondary instability of a temporally growing mixing layer.Journal of Fluid Mechanics 184 (1987) 207–243.

  14. 14.

    Lasheras, J.C. and Choi, H., Three-dimensional instability of a plane free shear layer: An experimental study of the formation and evolution of streamwise vortices.Journal of Fluid Mechanics 189 (1988) 53–86.

  15. 15.

    Grinstein, F.F., Gutmark, E.J., Parr, T.P., Hanson-Parr, D.M. and Obeysekare, U., Streamwise and spanwise vortex interaction in a circular reacting jet. In:Proceedings of the X turbulent Shear Flows Symposium, Penn State (1995) pp. 16.13–16.18.

  16. 16.

    Suprayan, R., Taubert, L., Blaise, E. and Fiedler, H.E., Vortex dynamics and DPIV investigations in a water jet. In:Euromech Colloquium 335, Roma (1995).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Romano, G.P. Investigation on time scales in a low Reynolds number jet flow using particle-tracking velocimetry. Appl. Sci. Res. 56, 209–220 (1996). https://doi.org/10.1007/BF02249382

Download citation

Key words

  • jet
  • image analysis
  • Lagrangian statistics
  • time scales