Abstract
Results pertaining to the theory of representations of “classical” Lie superalgebras are collected in the survey.
Preview
Unable to display preview. Download preview PDF.
Literature cited
- 1.D. V. Alekseevskii, D. A. Leites, and I. M. Shchepochkina, “Examples of simple, infinite-dimensional Lie superalgebras of vector fields,” Dokl. Bolg. Akad. Nauk,33, No. 9, 1187–1190 (1980).Google Scholar
- 2.A. A. Beilinson, “Coherent sheaves on Pn and problems of linear algebra,” Funkts. Anal. Prilozhen.,12, No. 3, 68–69 (1978).Google Scholar
- 3.A. A. Beilinson, “The derived category of coherent sheaves on Pn,” in: Vopr. Teor. Grupp i Gomol. Algebry (Yaroslavl'), No. 2, 42–54 (1979).Google Scholar
- 4.F. A. Berezin, “Representations of the supergroup U(p, q),” Funkts. Anal. Prilozhen.,10, No. 3, 70–71 (1976).Google Scholar
- 5.F. A. Berezin, Introduction to Algebra and Analysis in Commuting and Anticommuting Variables [in Russian], Moscow State Univ. (1983).Google Scholar
- 6.F. A. Berezin and D. A. Leites, “Supermanifolds,” Dokl. Akad. Nauk SSSR,224, No. 3, 505–508 (1975).Google Scholar
- 7.I. N. Bernshtein, I. M. Gel'fand, and S. I. Gel'fand, “Algebraic bundles on Pn and problems of linear algebra,” Funkts. Anal. Prilozhen.,12, No. 3, 66–68 (1978).Google Scholar
- 8.I. N. Bernshtein and D. A. Leites, “Integral forms and the Stokes formula on supermanifolds,” Funkts. Anal. Prilozhen.,11, No. 1, 55–56 (1977).Google Scholar
- 9.I. N. Bernshtein and D. A. Leites, “Irreducible representations of finite-dimensional Lie superalgebras of the series W,” in: Vopr. Teorii Grupp i Gomol. Algebry (Yaroslavl'), No. 2, 187–193 (1979).Google Scholar
- 10.I. N. Bernshtein and D. A. Leites, “A formula for the characters of irreducible finite-dimensional representations of Lie superalgebras of the series H and sl,” Dokl. Bolg. Akad. Nauk,33, No. 8, 1049–1051 (1980).Google Scholar
- 11.I. N. Bernshtein and D. A. Leites, “Invariant differential operators and irreducible representations of a Lie algebra of vector fields,” Serdika B"lg. Mat. Spisanie,7, 320–334 (1981).Google Scholar
- 12.N. Bourbaki, Lie Groups and Algebras [Russian translation], Mir, Moscow (1978).Google Scholar
- 13.Yu. I. Manin (ed.), Geometric Ideas in Physics [Russian translation], Mir, Moscow (1983).Google Scholar
- 14.P. Ya. Grozman, “Classification of bilinear invariant operators on tensor fields,” Funkts. Anal. Prilozhen.,14, No. 2, 58–59 (1980).Google Scholar
- 15.J. Dixmier, Enveloping Algebras, Elsevier (1977).Google Scholar
- 16.V. G. Drinfel'd and Yu. I. Manin, “Yang-Mills fields, instantons, tensor products of instantons,” Yad. Fiz.,29, No. 6, 1646–1654 (1979).Google Scholar
- 17.A. A. Zaitsev and L. V. Nikolenko, “Indecomposable representations of the Grassman algebra,” Funkts. Anal. Prilozhen.,4, No. 3, 101–102 (1970).Google Scholar
- 18.V. G. Kats, “On the classification of simple Lie superalgebras,” Funkts. Anal. Prilozhen.,9, No. 3, 91–92 (1975).Google Scholar
- 19.V. G. Kats, “Classification of simple algebraic supergroups,” Usp. Mat. Nauk,32, No. 3, 214–215 (1977).Google Scholar
- 20.V. G. Kats, “Letter to the editor,” Funkts. Anal. Prilozhen.,10, No. 2, 93 (1976).Google Scholar
- 21.A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow (1972).Google Scholar
- 22.A. A. Kirillov, “On invariant differential operators on geometric quantities,” Funkts. Anal. Prilozhen.,11, No. 2, 39–44 (1977).Google Scholar
- 23.A. A. Kirillov, “Invariant operators on geometric quantities,” in: Sovremennye Problemy Matematiki, Vol. 16 (Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR), Moscow (1980), pp. 3–29.Google Scholar
- 24.A. A. Kirillov, “Orbits of the group of diffeomorphisms of the circle and local Lie superalgebras,” Funkts. Anal. Prilozhen.,15, No. 2, 75–76 (1981).Google Scholar
- 25.R. Yu. Kirillova, “Explicit solutions of supered Toda lattices,” in: Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. AN SSSR,123 (1983), pp. 98–111.Google Scholar
- 26.I. A. Kostrikin, “Irreducible graded representations of Lie algebras of Cartan type,” Dokl. Akad. Nauk SSSR,243, No. 3, 565–567 (1978).Google Scholar
- 27.I. A. Kostrikin, “Representations of height 1 of infinite-dimensional Lie algebras of the series K,” Moscow State Univ., No. 2737-79 Dep (1979).Google Scholar
- 28.Yu. Yu. Kochetkov, “Irreducible induced representations of Leites superalgebras,” in: Vopr. Teoriii Grupp i Gomol. Algebry (Yaroslavl'), No. 3, 120–123 (1983).Google Scholar
- 29.Yu. Yu. Kochetkov, “Irreducible induced representations of Lie superalgebras of the series SLe(n),” YarGU, No. 3917-83 Dep (1983).Google Scholar
- 30.A. N. Leznov and M. V. Savel'ev, Group Methods of Integrating Nonlinear Dynamical Systems [in Russian], Nauka, Moscow (1984).Google Scholar
- 31.D. A. Leites, “Cohomologies of Lie superalgebras,” Funkts. Anal. Prilozhen.,9, No. 4, 75–76 (1975).Google Scholar
- 32.D. A. Leites, “Introduction to the theory of supermanifolds,” Usp. Mat. Nauk,35, No. 1, 3–57 (1980).Google Scholar
- 33.D. A. Leites, “A formula for the characters of irreducible, finite-dimensional representations of Lie superalgebras of the series C,” Dokl. Bolg. Akad. Nauk,33, No. 8, 1053–1055 (1980).Google Scholar
- 34.D. A. Leites, “Formulas for the characters of irreducible, finite-dimensional representations of simple Lie superalgebras,” Funkts. Anal. Prilozhen.,14, No. 2, 35–39 (1980).Google Scholar
- 35.D. A. Leites, Irreducible representations of Lie superalgebras of vector fields and invariant differential operators,” Funkts. Anal. Prilozhen.,16, No. 1, 76–78 (1982).Google Scholar
- 36.D. A. Leites, “Automorphisms and real forms of Lie superalgebras of vector fields,” in: Vopr. Teorii Grupp i Gomol. Algebry (Yaroslavl') (1983), pp. 126–127.Google Scholar
- 37.D. A. Leites, “Representations of Lie superalgebras,” Teor. Mat. Fiz.,52, No. 2, 225–228 (1982).Google Scholar
- 38.D. A. Leites, “Irreducible representations of Lie superalgebras of divergence-free vector fields and invariant differential operators,” Serkida B"lg. Mat. Spisanie,8, No. 1, 12–15 (1982).Google Scholar
- 39.D. A. Leites, Theory of Supermanifolds [in Russian], Izd. KFAN SSSR, Petrozavodsk (1983).Google Scholar
- 40.D. A. Leites, “Clifford algebras as superalgebras and quantization,” Teor. Mat. Fiz.,58, No. 2, 229–232 (1984).Google Scholar
- 41.D. A. Leites and M. A. Semenov-Tyan-Shanskii, “Lie superalgebras and integrable systems,” in: Zap. Nauchn. Seminarov Leningr. Otd. Mat. Inst. AN SSSR, Vol. 123, Nauka, Leningrad (1983), pp. 92–97.Google Scholar
- 42.D. A. Leites and V. V. Serganova, “Solutions of the classical Yang-Baxter equation for simple Lie superalgebras,” Teor. Mat. Fiz.,58, No. 1, 26–37 (1984).Google Scholar
- 43.D. A. Leites and B. L. Feigin, “Kac-Moody superalgebras,” in: Teoretiko-gruppovye Metody v Fizike [in Russian], Vol. 1, Nauka, Moscow (1983), pp. 274–278.Google Scholar
- 44.D. A. Leites and B. L. Feigin, “New Lie superalgebras of string theories,” in: Teoretiko-gruppovye Metody v Fizike [in Russian], Vol. 1, Nauka, Moscow, pp. 269–273.Google Scholar
- 45.Yu. I. Manin, Gauge Fields and Complex Geometry [in Russian], Nauka, Moscow (1984), pp. 3–80.Google Scholar
- 46.Yu. I. Manin, “Holomorphic supergeometry and Yang-Mills superfields,” in: Sovremennye Problemy Matematiki, Vol. 24 (Itogi Nauki i Tekh. VINITI AN SSSR), Moscow (1984).Google Scholar
- 47.M. S. Marinov, “Relativistic strings and dual models of strong interactions,” Usp. Fiz. Nauk,121, No. 3, 377–425 (1977).Google Scholar
- 48.M. V. Mosalova, “On functions of noncommuting operators generating graded Lie algebras,” Mat. Zametki,29, No. 1, 35–44 (1980).Google Scholar
- 49.V. I. Ogievetskii, “Geometry of supergravitation,” in: Problemy Kvantovoi Teorii Polya, JINR, Dubna (1981), pp. 187–200.Google Scholar
- 50.V. I. Ogievetskii and L. Mezinchesku, “Symmetries between bosons and fermions and superfields,” Usp. Fiz. Nauk,117, No. 4, 637–683 (1975).Google Scholar
- 51.V. S. Retakh, “Massa operations in Lie superalgebras and differentials of the Quillen spectral sequence,” Funkts. Anal. Prilozhen.,12, No. 4, 91–92 (1978).Google Scholar
- 52.V. S. Retakh and B. L. Feigin, “On cohomologies of some Lie algebras and superalgebras of vector fields,” Usp. Mat. Nauk,37, No. 2, 233–234 (1982).Google Scholar
- 53.A. N. Rudakov, “Irreducible representations of infinite-dimensional Lie algebras of Cartan type,” Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 3, 835–866 (1974).Google Scholar
- 54.A. N. Rudakov, “Irreducible representations of finite-dimensional Lie algebras of the series S and H,” Izv. Akad. Nauk SSSR, Ser. Mat.,39, No. 3, 496–511 (1975).Google Scholar
- 55.V. V. Serganova, “Real forms of Kac-Moody superalgebras,” in: Teoretiko-gruppovye Metody v Fizike [in Russian], Vol. 1, Nauka, Moscow (1983), pp. 279–282.Google Scholar
- 56.V. V. Serganova, “Classification of simple real Lie superalgebras and symmetric superspaces,” Funkts. Anal. Prilozhen.,17, No. 3, 46–54 (1983).Google Scholar
- 57.V. V. Serganova, “Automorphisms and real forms of the superalgebras of string theories,” Izv. Akad. Nauk SSSR, Ser. Mat.,48, No. 2 (1984).Google Scholar
- 58.A. N. Sergeev, “Invariant polynomial functions on Lie superalgebras,” Dokl. Bolg. Akad. Nauk,35, No. 5, 573–576 (1982).Google Scholar
- 59.A. A. Slavnov, “Supersymmetric gauge theories and their possible applications to weak and electromagnetic interactions,” Usp. Fiz. Nauk,124, No. 3, 487–508 (1978).Google Scholar
- 60.Group-Theoretic Methods in Physics [in Russian], Vols. 1, 2, Nauka, Moscow (1983).Google Scholar
- 61.B. L. Feigin and D. B. Fuks, “Verma modules over a Virasoro algebra,” Funkts. Anal. Prilozhen.,17, No. 3, 91–92 (1982).Google Scholar
- 62.D. Fridman and P. van N'yuvenkheizen, “Supergravitation and unification of the laws of physics,” Usp. Fiz. Nauk,128, No. 1, 135–156 (1979).Google Scholar
- 63.D. B. Fuks, Cohomologies of Infinite-Dimensional Lie Algebras [in Russian], Nauka, Moscow (1984).Google Scholar
- 64.Kh'eu NguenVan, “On the theory of representations of the superalgebra of extended supersymmetry,” Ob"edin. Inst. Yad. Issled., Dubna, Soobshch., No. P2-82-819 (1982).Google Scholar
- 65.A. V. Shapovalov, “Real irreducible representations of Hamiltonian Lie superalgebras,” No. 3448-80 Dep, Moscow State Univ. (1980).Google Scholar
- 66.A. V. Shapovalov, “Finite-dimensional irreducible representations of Hamiltonian Lie superalgebras,” Mat. Sb.,107, No. 2, 259–274 (1978).Google Scholar
- 67.A. V. Shapovalov, “Invariant differential operators and irreducible representations of finite-dimensional Hamiltonian and Poisson Lie superalgebras,” Serdika B"lg. Mat. Spisanie,7, No. 4, 337–342 (1981).Google Scholar
- 68.G. S. Shmelev, “Differential operators invariant relative to the Lie superalgebra H (2¦ 2; λ) and its irreducible representations,” Dokl. Bolg. Akad. Nauk,35, No. 3, 287–290 (1982).Google Scholar
- 69.G. S. Shmelev, “Invariant operators in symplectic superspace,” Mat. Sb.,112, No. 4, 21–38 (1983).Google Scholar
- 70.G. S. Shmelev, “Irreducible representations of infinite-dimensional Hamiltonian and Poisson Lie superalgebras and invariant differential operators,” Serdika B"lg. Mat. Spisanie,8, No. 4, 408–417 (1982).Google Scholar
- 71.G. S. Shmelev, “Irreducible representations of Poisson Lie superalgebras and invariant differential operators,” Funkts. Anal. Prilozhen.,17, No. 1, 91–92 (1983).Google Scholar
- 72.G. S. Shmelev, “Classification of indecomposable finite-dimensional representations of the Lie superalgebra W(0, 2),” Dokl. Bolg. Akad. Nauk,35, No. 8, 1025–1027 (1982).Google Scholar
- 73.I. M. Shchepochkina, “Exceptional simple infinite-dimensional Lie superalgebras,” Dokl. Bolg. Akad. Nauk,36, No. 3, 313–314 (1983).Google Scholar
- 74.Ademollo et al., “Dual string models, part 1,” Nucl. Phys.,B111, 1, 77–100 (1976); Part 2, Nucl. Phys.,B114, 2, 297–316 (1976).Google Scholar
- 75.Ademollo et al., “Supersymmetric strings and colour confinement,” Phys. Lett.,B62, 1, 105–110 (1976).Google Scholar
- 76.A. B. Balantekin and I. Bars, “Dimension and character formulas for Lie supergroups,” J. Math. Phys.,22, No. 6, 1149–1162 (1981).Google Scholar
- 77.A. B. Balantekin, “Representations of supergroups,” J. Math. Phys.,22, No. 8, 1810–1818 (1981).Google Scholar
- 78.A. B. Balantekin and I. Bars, “Branching rules for the supergroups SU(N/M) from those of SU(N+M),” J. Math. Phys.,23, No. 7, 1239–1247 (1982).Google Scholar
- 79.I. Bars, B. Morel, and H. Ruegg, “Kac-Dynkin diagrams and supertableaux,” J. Math. Phys.,24, No. 4, 201D–2262 (1983).Google Scholar
- 80.A. Beillinson and J. Bernstein, “Localisation de of modules,” C. R. Acad. Sci., Paris,292, No. 1, I-15–I-18 (1981).Google Scholar
- 81.A. Berele and A. Regev, “Hooke-Young diagrams, combinatorics, and representations of Lie superalgebras,” Bull. (New Series) Am. Math. Soc.,8, No. 2, 337–339 (1983).Google Scholar
- 82.F. A. Berezin, “The construction of Lie supergroups U(p, q) and C(m, n),” ITEP-76, Moscow, ITEP (1977).Google Scholar
- 83.F. A. Berezin, “The radial parts of the Laplace operators on the Lie supergroups U(p, q) and C(m, n),” ITEP-75, Moscow, ITEP (1977).Google Scholar
- 84.F. A. Berezin, “Lie superalgebras,” ITEP-66, Moscow, ITEP (1977).Google Scholar
- 85.F. A. Berezin, “The Laplace-Casimir operators (general theory),” ITEP (1977).Google Scholar
- 86.F. A. Berezin and V. N. Tolstoy, “The group with Grassman structure VOSp(1, 2),” Commun. Math. Phys.,78, No. 3, 409–428 (1981).Google Scholar
- 87.J. N. Bernstein and D. A. Leites, “The superalgebra Q(n), the odd trace, and the odd determinant,” Dokl. Bolg. Akad. Nauk,35, No. 3, 285–286 (1982).Google Scholar
- 88.J. Blank et al., “Boson-fermion representations of Lie superalgebras. The example of osp(1, 2),” J. Math. Phys.,23, No. 3, 350–353 (1982).Google Scholar
- 89.R. Blok, “Classification of the irreducible representations of S1(2, C),” Bull. Am. Math. Soc. (New Series),1, No. 1, 247–250 (1979).Google Scholar
- 90.J. L. Brylinski and M. Kashiwara, “Kazhdan-Lusztig conjecture and holonomic systems,” Invent. Math.,64, 387 (1981).Google Scholar
- 91.L. Corwin, Y. Ne'eman, and S. Sternberg, “Lie algebras in mathematics and physics,” Rev. Mod. Phys.,47, 573–604 (1975).Google Scholar
- 92.D. Z. Djokovic, “Superlinear algebras or two-graded algebraic structures,” Can. J. Math.,30, No. 6, 1336–1344 (1978).Google Scholar
- 93.V. V. Deodhar, O. Gabber, and V. G. Kac, “Structure of some categories of representations of infinite-dimensional Lie algebras,” Adv. Math.,45, 92–116 (1982).Google Scholar
- 94.I. B. Frenkel, “Spinor representation of affine Lie algebras,” Proc. Nat. Acad. Sci. USA Phys. Sci.,77, No. 11, 6303–6306 (1980).Google Scholar
- 95.I. B. Frenkel and V. G. Kac, “Basic representations of affine Lie algebras and dual resonance models, Invent. Math.,62, No. 1, 23–30 (1980).Google Scholar
- 96.F. Cursey and L. Marchildon, “The graded Lie groups SU(2, 2/1) and OSp(1/4),” J. Math. Phys.,19, No. 5, 942–951 (1978).Google Scholar
- 97.S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York (1978).Google Scholar
- 98.L. Hlavaty and J. Niederle, “Casimir operators of the simplest supersymmetry superalgebras,” Lett. Math. Phys.,4, No. 4, 301–306 (1980).Google Scholar
- 99.J. W. B. Hughes, “SU(2) shift operators and representations of Spl(2, 1),” Group Theor. Math. Phys., Kiryat Anavim, 1979, Bristol, e.a., pp. 320–322.Google Scholar
- 100.J. W. B. Hughes, “Representations of osp (2, 1) and the metaplectic representations,” J. Math. Phys., No. 2, 245–250 (1981).Google Scholar
- 101.J. P. Hurni and B. Morel, “Irreducible representations of the superalgebras of type II,” J. Math. Phys.,23, No. 12, 2236–2243 (1982).Google Scholar
- 102.J. P. Hurni and B. Morel, “Irreducible representations of SU(m/n),” J. Math. Phys.,24, No. 1, 157–163 (1983).Google Scholar
- 103.V. G. Kac, “A sketch of Lie superalgebras theory,” Commun. Math. Phys.,53, No. 1, 31–64 (1977).Google Scholar
- 104.V. G. Kac, “Lie superalgebras,” Adv. Math.,26, 8–96 (1977).Google Scholar
- 105.V. G. Kac, “Infinite-dimensional algebras, Dedekind's η-function, classical Moebius function, and the very strange formula,” Adv. Math.30, 85–136 (1978).Google Scholar
- 106.V. G. Kac, “Representations of classical Lie superalgebras,” Lect. Notes Math.,676, 597–626 (1978).Google Scholar
- 107.V. G. Kac, “On simplicity of certain infinite-dimensional Lie algebras,” Bull. Am. Math. Soc,2, No. 2, 311–314 (1980).Google Scholar
- 108.V. G. Kac, “An euclidation of ‘Infinite-dimensional algebras ... and the very strange formula,’ E8 (1) and the cube root of the modular invariant theory,” Adv. Math.,35, 264–273 (1980).Google Scholar
- 109.V. G. Kac, “Some problems on infinite-dimensional Lie algebras and their representations,” Lect. Notes Math.,933, 117–126 (1983).Google Scholar
- 110.V. G. Kac, Infinite-Dimensional Lie Algebras. An Introduction, Birkhauser, New York (1983).Google Scholar
- 111.V. G. Kac, “Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras,” Commun. Alg.,5, 1375–1400 (1977).Google Scholar
- 112.I. Kaplansky, “Superalgebras,” Pac. J. Math.,86, No. 1, 93–98 (1980).Google Scholar
- 113.I. Kaplansky, “Some simple Lie algebras of characteristic 2,” Lect. Notes Math.,933, 127–129 (1982).Google Scholar
- 114.J. L. Koszul, “Les algebras de Lie gradues de type sl(n, 1) et l'operateur de A. Capelli,” C. R. Acad. Sci.,292, Ser. 1, No. 2, 139–141 (1981).Google Scholar
- 115.F. W. Lemiere and J. Patera, “Congruence classes of finite-dimensional representations of simple Lie superalgebras,” J. Math. Phys.,23, No. 8, 1409–1414 (1982).Google Scholar
- 116.J. Lukierski, “Graded orthosymplectic geometry and invariant fermionic σ-models,” Lett. Math. Phys.,3, No. 2, 135–140 (1979).Google Scholar
- 117.J. Lukierski, “Complex and quaternionic supergeometry,” Supergravity Proc. Workshop, Stony Brook (1975), Amsterdam e.a. (1979), pp. 85–92.Google Scholar
- 118.J. Lukierski, “Quaternionic and supersymmetric σ-models,” Lect. Notes Math.,836, 221–245 (1980).Google Scholar
- 119.M. Marcu, “The tensor product of two irreducible representations of the Spl(2, 1) superalgebra,” J. Math. Phys.,21, No. 6, 1284–1292 (1980).Google Scholar
- 120.M. Marcu, “The representations of spl(2, 1) — an example of representations of basic superalgebras,” J. Math. Phys.,21, No. 6, 1277–1283 (1980).Google Scholar
- 121.Y. Ne'eman and J. Tierry-Mieg, “Gange asthenodynamics (SU(2/1)). Classical discussion,” Lect. Notes Math.,836, 318–348 (1980).Google Scholar
- 122.Tch. D. Palev, “Canonical realizations of Lie superalgebras: ladder representations of the Lie superalgebra A(m, n),” J. Math. Phys.,22, No. 10, 2127–2131 (1981).Google Scholar
- 123.Tch. D. Palev, “Fock space representations of the Lie superalgebra A(o, n),” J. Math. Phys.,21, No. 6, 1293–1298 (1980).Google Scholar
- 124.Tch. D. Palev, “On a class of nontypical representations of the Lie superalgebra A(1, 0),” Godishn. Vyssh. Uchebn. Zaved., Tekh. Fiz., 1979,16, 103–104 (1980).Google Scholar
- 125.M. Parker, “Real forms of simple finite-dimensional classical Lie superalgebras,” J. Math. Phys.,21, No. 4, 689–697 (1980).Google Scholar
- 126.P. Ramond and J. Schwarz, “Classification of dual model gauge algebras,” Phys. Lett.,B64, No. 1, 75–77 (1976).Google Scholar
- 127.V. Rittenberg and M. Schennert, “Elementary construction of graded Lie groups,” J. Math. Phys.,19, No. 3, 709–713 (1978).Google Scholar
- 128.V. Rittenberg and M. Schennert, “A remarkable connection between the representations of the Lie superalgebras Osp (1, 2n) and the Lie algebras 0 (2n+1),” Comm. Math. Phys.,83, 1–9 (1982).Google Scholar
- 129.V. Rittenberg and D. Wyler, “Sequence of Z2 ⊕ Z2-graded Lie algebras and superalgebras,” J. Math. Phys.,19, No. 10, 2193–2200 (1978).Google Scholar
- 130.M. Scheunert, “The theory of Lie superalgebras,” Lect. Notes Math.,716 (1979).Google Scholar
- 131.A. N. Sergeev, “The centre of enveloping algebra for Lie superalgebra Q(n, C),” Lett. Math. Phys.,7, 177–179 (1983).Google Scholar
Copyright information
© Plenum Publishing Corporation 1985