Advertisement

Journal of Soviet Mathematics

, Volume 30, Issue 6, pp 2481–2512 | Cite as

Lie superalgebras

  • D. A. Leites
Article

Abstract

Results pertaining to the theory of representations of “classical” Lie superalgebras are collected in the survey.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    D. V. Alekseevskii, D. A. Leites, and I. M. Shchepochkina, “Examples of simple, infinite-dimensional Lie superalgebras of vector fields,” Dokl. Bolg. Akad. Nauk,33, No. 9, 1187–1190 (1980).Google Scholar
  2. 2.
    A. A. Beilinson, “Coherent sheaves on Pn and problems of linear algebra,” Funkts. Anal. Prilozhen.,12, No. 3, 68–69 (1978).Google Scholar
  3. 3.
    A. A. Beilinson, “The derived category of coherent sheaves on Pn,” in: Vopr. Teor. Grupp i Gomol. Algebry (Yaroslavl'), No. 2, 42–54 (1979).Google Scholar
  4. 4.
    F. A. Berezin, “Representations of the supergroup U(p, q),” Funkts. Anal. Prilozhen.,10, No. 3, 70–71 (1976).Google Scholar
  5. 5.
    F. A. Berezin, Introduction to Algebra and Analysis in Commuting and Anticommuting Variables [in Russian], Moscow State Univ. (1983).Google Scholar
  6. 6.
    F. A. Berezin and D. A. Leites, “Supermanifolds,” Dokl. Akad. Nauk SSSR,224, No. 3, 505–508 (1975).Google Scholar
  7. 7.
    I. N. Bernshtein, I. M. Gel'fand, and S. I. Gel'fand, “Algebraic bundles on Pn and problems of linear algebra,” Funkts. Anal. Prilozhen.,12, No. 3, 66–68 (1978).Google Scholar
  8. 8.
    I. N. Bernshtein and D. A. Leites, “Integral forms and the Stokes formula on supermanifolds,” Funkts. Anal. Prilozhen.,11, No. 1, 55–56 (1977).Google Scholar
  9. 9.
    I. N. Bernshtein and D. A. Leites, “Irreducible representations of finite-dimensional Lie superalgebras of the series W,” in: Vopr. Teorii Grupp i Gomol. Algebry (Yaroslavl'), No. 2, 187–193 (1979).Google Scholar
  10. 10.
    I. N. Bernshtein and D. A. Leites, “A formula for the characters of irreducible finite-dimensional representations of Lie superalgebras of the series H and sl,” Dokl. Bolg. Akad. Nauk,33, No. 8, 1049–1051 (1980).Google Scholar
  11. 11.
    I. N. Bernshtein and D. A. Leites, “Invariant differential operators and irreducible representations of a Lie algebra of vector fields,” Serdika B"lg. Mat. Spisanie,7, 320–334 (1981).Google Scholar
  12. 12.
    N. Bourbaki, Lie Groups and Algebras [Russian translation], Mir, Moscow (1978).Google Scholar
  13. 13.
    Yu. I. Manin (ed.), Geometric Ideas in Physics [Russian translation], Mir, Moscow (1983).Google Scholar
  14. 14.
    P. Ya. Grozman, “Classification of bilinear invariant operators on tensor fields,” Funkts. Anal. Prilozhen.,14, No. 2, 58–59 (1980).Google Scholar
  15. 15.
    J. Dixmier, Enveloping Algebras, Elsevier (1977).Google Scholar
  16. 16.
    V. G. Drinfel'd and Yu. I. Manin, “Yang-Mills fields, instantons, tensor products of instantons,” Yad. Fiz.,29, No. 6, 1646–1654 (1979).Google Scholar
  17. 17.
    A. A. Zaitsev and L. V. Nikolenko, “Indecomposable representations of the Grassman algebra,” Funkts. Anal. Prilozhen.,4, No. 3, 101–102 (1970).Google Scholar
  18. 18.
    V. G. Kats, “On the classification of simple Lie superalgebras,” Funkts. Anal. Prilozhen.,9, No. 3, 91–92 (1975).Google Scholar
  19. 19.
    V. G. Kats, “Classification of simple algebraic supergroups,” Usp. Mat. Nauk,32, No. 3, 214–215 (1977).Google Scholar
  20. 20.
    V. G. Kats, “Letter to the editor,” Funkts. Anal. Prilozhen.,10, No. 2, 93 (1976).Google Scholar
  21. 21.
    A. A. Kirillov, Elements of the Theory of Representations [in Russian], Nauka, Moscow (1972).Google Scholar
  22. 22.
    A. A. Kirillov, “On invariant differential operators on geometric quantities,” Funkts. Anal. Prilozhen.,11, No. 2, 39–44 (1977).Google Scholar
  23. 23.
    A. A. Kirillov, “Invariant operators on geometric quantities,” in: Sovremennye Problemy Matematiki, Vol. 16 (Itogi Nauki i Tekh. VINITI Akad. Nauk SSSR), Moscow (1980), pp. 3–29.Google Scholar
  24. 24.
    A. A. Kirillov, “Orbits of the group of diffeomorphisms of the circle and local Lie superalgebras,” Funkts. Anal. Prilozhen.,15, No. 2, 75–76 (1981).Google Scholar
  25. 25.
    R. Yu. Kirillova, “Explicit solutions of supered Toda lattices,” in: Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. AN SSSR,123 (1983), pp. 98–111.Google Scholar
  26. 26.
    I. A. Kostrikin, “Irreducible graded representations of Lie algebras of Cartan type,” Dokl. Akad. Nauk SSSR,243, No. 3, 565–567 (1978).Google Scholar
  27. 27.
    I. A. Kostrikin, “Representations of height 1 of infinite-dimensional Lie algebras of the series K,” Moscow State Univ., No. 2737-79 Dep (1979).Google Scholar
  28. 28.
    Yu. Yu. Kochetkov, “Irreducible induced representations of Leites superalgebras,” in: Vopr. Teoriii Grupp i Gomol. Algebry (Yaroslavl'), No. 3, 120–123 (1983).Google Scholar
  29. 29.
    Yu. Yu. Kochetkov, “Irreducible induced representations of Lie superalgebras of the series SLe(n),” YarGU, No. 3917-83 Dep (1983).Google Scholar
  30. 30.
    A. N. Leznov and M. V. Savel'ev, Group Methods of Integrating Nonlinear Dynamical Systems [in Russian], Nauka, Moscow (1984).Google Scholar
  31. 31.
    D. A. Leites, “Cohomologies of Lie superalgebras,” Funkts. Anal. Prilozhen.,9, No. 4, 75–76 (1975).Google Scholar
  32. 32.
    D. A. Leites, “Introduction to the theory of supermanifolds,” Usp. Mat. Nauk,35, No. 1, 3–57 (1980).Google Scholar
  33. 33.
    D. A. Leites, “A formula for the characters of irreducible, finite-dimensional representations of Lie superalgebras of the series C,” Dokl. Bolg. Akad. Nauk,33, No. 8, 1053–1055 (1980).Google Scholar
  34. 34.
    D. A. Leites, “Formulas for the characters of irreducible, finite-dimensional representations of simple Lie superalgebras,” Funkts. Anal. Prilozhen.,14, No. 2, 35–39 (1980).Google Scholar
  35. 35.
    D. A. Leites, Irreducible representations of Lie superalgebras of vector fields and invariant differential operators,” Funkts. Anal. Prilozhen.,16, No. 1, 76–78 (1982).Google Scholar
  36. 36.
    D. A. Leites, “Automorphisms and real forms of Lie superalgebras of vector fields,” in: Vopr. Teorii Grupp i Gomol. Algebry (Yaroslavl') (1983), pp. 126–127.Google Scholar
  37. 37.
    D. A. Leites, “Representations of Lie superalgebras,” Teor. Mat. Fiz.,52, No. 2, 225–228 (1982).Google Scholar
  38. 38.
    D. A. Leites, “Irreducible representations of Lie superalgebras of divergence-free vector fields and invariant differential operators,” Serkida B"lg. Mat. Spisanie,8, No. 1, 12–15 (1982).Google Scholar
  39. 39.
    D. A. Leites, Theory of Supermanifolds [in Russian], Izd. KFAN SSSR, Petrozavodsk (1983).Google Scholar
  40. 40.
    D. A. Leites, “Clifford algebras as superalgebras and quantization,” Teor. Mat. Fiz.,58, No. 2, 229–232 (1984).Google Scholar
  41. 41.
    D. A. Leites and M. A. Semenov-Tyan-Shanskii, “Lie superalgebras and integrable systems,” in: Zap. Nauchn. Seminarov Leningr. Otd. Mat. Inst. AN SSSR, Vol. 123, Nauka, Leningrad (1983), pp. 92–97.Google Scholar
  42. 42.
    D. A. Leites and V. V. Serganova, “Solutions of the classical Yang-Baxter equation for simple Lie superalgebras,” Teor. Mat. Fiz.,58, No. 1, 26–37 (1984).Google Scholar
  43. 43.
    D. A. Leites and B. L. Feigin, “Kac-Moody superalgebras,” in: Teoretiko-gruppovye Metody v Fizike [in Russian], Vol. 1, Nauka, Moscow (1983), pp. 274–278.Google Scholar
  44. 44.
    D. A. Leites and B. L. Feigin, “New Lie superalgebras of string theories,” in: Teoretiko-gruppovye Metody v Fizike [in Russian], Vol. 1, Nauka, Moscow, pp. 269–273.Google Scholar
  45. 45.
    Yu. I. Manin, Gauge Fields and Complex Geometry [in Russian], Nauka, Moscow (1984), pp. 3–80.Google Scholar
  46. 46.
    Yu. I. Manin, “Holomorphic supergeometry and Yang-Mills superfields,” in: Sovremennye Problemy Matematiki, Vol. 24 (Itogi Nauki i Tekh. VINITI AN SSSR), Moscow (1984).Google Scholar
  47. 47.
    M. S. Marinov, “Relativistic strings and dual models of strong interactions,” Usp. Fiz. Nauk,121, No. 3, 377–425 (1977).Google Scholar
  48. 48.
    M. V. Mosalova, “On functions of noncommuting operators generating graded Lie algebras,” Mat. Zametki,29, No. 1, 35–44 (1980).Google Scholar
  49. 49.
    V. I. Ogievetskii, “Geometry of supergravitation,” in: Problemy Kvantovoi Teorii Polya, JINR, Dubna (1981), pp. 187–200.Google Scholar
  50. 50.
    V. I. Ogievetskii and L. Mezinchesku, “Symmetries between bosons and fermions and superfields,” Usp. Fiz. Nauk,117, No. 4, 637–683 (1975).Google Scholar
  51. 51.
    V. S. Retakh, “Massa operations in Lie superalgebras and differentials of the Quillen spectral sequence,” Funkts. Anal. Prilozhen.,12, No. 4, 91–92 (1978).Google Scholar
  52. 52.
    V. S. Retakh and B. L. Feigin, “On cohomologies of some Lie algebras and superalgebras of vector fields,” Usp. Mat. Nauk,37, No. 2, 233–234 (1982).Google Scholar
  53. 53.
    A. N. Rudakov, “Irreducible representations of infinite-dimensional Lie algebras of Cartan type,” Izv. Akad. Nauk SSSR, Ser. Mat.,38, No. 3, 835–866 (1974).Google Scholar
  54. 54.
    A. N. Rudakov, “Irreducible representations of finite-dimensional Lie algebras of the series S and H,” Izv. Akad. Nauk SSSR, Ser. Mat.,39, No. 3, 496–511 (1975).Google Scholar
  55. 55.
    V. V. Serganova, “Real forms of Kac-Moody superalgebras,” in: Teoretiko-gruppovye Metody v Fizike [in Russian], Vol. 1, Nauka, Moscow (1983), pp. 279–282.Google Scholar
  56. 56.
    V. V. Serganova, “Classification of simple real Lie superalgebras and symmetric superspaces,” Funkts. Anal. Prilozhen.,17, No. 3, 46–54 (1983).Google Scholar
  57. 57.
    V. V. Serganova, “Automorphisms and real forms of the superalgebras of string theories,” Izv. Akad. Nauk SSSR, Ser. Mat.,48, No. 2 (1984).Google Scholar
  58. 58.
    A. N. Sergeev, “Invariant polynomial functions on Lie superalgebras,” Dokl. Bolg. Akad. Nauk,35, No. 5, 573–576 (1982).Google Scholar
  59. 59.
    A. A. Slavnov, “Supersymmetric gauge theories and their possible applications to weak and electromagnetic interactions,” Usp. Fiz. Nauk,124, No. 3, 487–508 (1978).Google Scholar
  60. 60.
    Group-Theoretic Methods in Physics [in Russian], Vols. 1, 2, Nauka, Moscow (1983).Google Scholar
  61. 61.
    B. L. Feigin and D. B. Fuks, “Verma modules over a Virasoro algebra,” Funkts. Anal. Prilozhen.,17, No. 3, 91–92 (1982).Google Scholar
  62. 62.
    D. Fridman and P. van N'yuvenkheizen, “Supergravitation and unification of the laws of physics,” Usp. Fiz. Nauk,128, No. 1, 135–156 (1979).Google Scholar
  63. 63.
    D. B. Fuks, Cohomologies of Infinite-Dimensional Lie Algebras [in Russian], Nauka, Moscow (1984).Google Scholar
  64. 64.
    Kh'eu NguenVan, “On the theory of representations of the superalgebra of extended supersymmetry,” Ob"edin. Inst. Yad. Issled., Dubna, Soobshch., No. P2-82-819 (1982).Google Scholar
  65. 65.
    A. V. Shapovalov, “Real irreducible representations of Hamiltonian Lie superalgebras,” No. 3448-80 Dep, Moscow State Univ. (1980).Google Scholar
  66. 66.
    A. V. Shapovalov, “Finite-dimensional irreducible representations of Hamiltonian Lie superalgebras,” Mat. Sb.,107, No. 2, 259–274 (1978).Google Scholar
  67. 67.
    A. V. Shapovalov, “Invariant differential operators and irreducible representations of finite-dimensional Hamiltonian and Poisson Lie superalgebras,” Serdika B"lg. Mat. Spisanie,7, No. 4, 337–342 (1981).Google Scholar
  68. 68.
    G. S. Shmelev, “Differential operators invariant relative to the Lie superalgebra H (2¦ 2; λ) and its irreducible representations,” Dokl. Bolg. Akad. Nauk,35, No. 3, 287–290 (1982).Google Scholar
  69. 69.
    G. S. Shmelev, “Invariant operators in symplectic superspace,” Mat. Sb.,112, No. 4, 21–38 (1983).Google Scholar
  70. 70.
    G. S. Shmelev, “Irreducible representations of infinite-dimensional Hamiltonian and Poisson Lie superalgebras and invariant differential operators,” Serdika B"lg. Mat. Spisanie,8, No. 4, 408–417 (1982).Google Scholar
  71. 71.
    G. S. Shmelev, “Irreducible representations of Poisson Lie superalgebras and invariant differential operators,” Funkts. Anal. Prilozhen.,17, No. 1, 91–92 (1983).Google Scholar
  72. 72.
    G. S. Shmelev, “Classification of indecomposable finite-dimensional representations of the Lie superalgebra W(0, 2),” Dokl. Bolg. Akad. Nauk,35, No. 8, 1025–1027 (1982).Google Scholar
  73. 73.
    I. M. Shchepochkina, “Exceptional simple infinite-dimensional Lie superalgebras,” Dokl. Bolg. Akad. Nauk,36, No. 3, 313–314 (1983).Google Scholar
  74. 74.
    Ademollo et al., “Dual string models, part 1,” Nucl. Phys.,B111, 1, 77–100 (1976); Part 2, Nucl. Phys.,B114, 2, 297–316 (1976).Google Scholar
  75. 75.
    Ademollo et al., “Supersymmetric strings and colour confinement,” Phys. Lett.,B62, 1, 105–110 (1976).Google Scholar
  76. 76.
    A. B. Balantekin and I. Bars, “Dimension and character formulas for Lie supergroups,” J. Math. Phys.,22, No. 6, 1149–1162 (1981).Google Scholar
  77. 77.
    A. B. Balantekin, “Representations of supergroups,” J. Math. Phys.,22, No. 8, 1810–1818 (1981).Google Scholar
  78. 78.
    A. B. Balantekin and I. Bars, “Branching rules for the supergroups SU(N/M) from those of SU(N+M),” J. Math. Phys.,23, No. 7, 1239–1247 (1982).Google Scholar
  79. 79.
    I. Bars, B. Morel, and H. Ruegg, “Kac-Dynkin diagrams and supertableaux,” J. Math. Phys.,24, No. 4, 201D–2262 (1983).Google Scholar
  80. 80.
    A. Beillinson and J. Bernstein, “Localisation de of modules,” C. R. Acad. Sci., Paris,292, No. 1, I-15–I-18 (1981).Google Scholar
  81. 81.
    A. Berele and A. Regev, “Hooke-Young diagrams, combinatorics, and representations of Lie superalgebras,” Bull. (New Series) Am. Math. Soc.,8, No. 2, 337–339 (1983).Google Scholar
  82. 82.
    F. A. Berezin, “The construction of Lie supergroups U(p, q) and C(m, n),” ITEP-76, Moscow, ITEP (1977).Google Scholar
  83. 83.
    F. A. Berezin, “The radial parts of the Laplace operators on the Lie supergroups U(p, q) and C(m, n),” ITEP-75, Moscow, ITEP (1977).Google Scholar
  84. 84.
    F. A. Berezin, “Lie superalgebras,” ITEP-66, Moscow, ITEP (1977).Google Scholar
  85. 85.
    F. A. Berezin, “The Laplace-Casimir operators (general theory),” ITEP (1977).Google Scholar
  86. 86.
    F. A. Berezin and V. N. Tolstoy, “The group with Grassman structure VOSp(1, 2),” Commun. Math. Phys.,78, No. 3, 409–428 (1981).Google Scholar
  87. 87.
    J. N. Bernstein and D. A. Leites, “The superalgebra Q(n), the odd trace, and the odd determinant,” Dokl. Bolg. Akad. Nauk,35, No. 3, 285–286 (1982).Google Scholar
  88. 88.
    J. Blank et al., “Boson-fermion representations of Lie superalgebras. The example of osp(1, 2),” J. Math. Phys.,23, No. 3, 350–353 (1982).Google Scholar
  89. 89.
    R. Blok, “Classification of the irreducible representations of S1(2, C),” Bull. Am. Math. Soc. (New Series),1, No. 1, 247–250 (1979).Google Scholar
  90. 90.
    J. L. Brylinski and M. Kashiwara, “Kazhdan-Lusztig conjecture and holonomic systems,” Invent. Math.,64, 387 (1981).Google Scholar
  91. 91.
    L. Corwin, Y. Ne'eman, and S. Sternberg, “Lie algebras in mathematics and physics,” Rev. Mod. Phys.,47, 573–604 (1975).Google Scholar
  92. 92.
    D. Z. Djokovic, “Superlinear algebras or two-graded algebraic structures,” Can. J. Math.,30, No. 6, 1336–1344 (1978).Google Scholar
  93. 93.
    V. V. Deodhar, O. Gabber, and V. G. Kac, “Structure of some categories of representations of infinite-dimensional Lie algebras,” Adv. Math.,45, 92–116 (1982).Google Scholar
  94. 94.
    I. B. Frenkel, “Spinor representation of affine Lie algebras,” Proc. Nat. Acad. Sci. USA Phys. Sci.,77, No. 11, 6303–6306 (1980).Google Scholar
  95. 95.
    I. B. Frenkel and V. G. Kac, “Basic representations of affine Lie algebras and dual resonance models, Invent. Math.,62, No. 1, 23–30 (1980).Google Scholar
  96. 96.
    F. Cursey and L. Marchildon, “The graded Lie groups SU(2, 2/1) and OSp(1/4),” J. Math. Phys.,19, No. 5, 942–951 (1978).Google Scholar
  97. 97.
    S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York (1978).Google Scholar
  98. 98.
    L. Hlavaty and J. Niederle, “Casimir operators of the simplest supersymmetry superalgebras,” Lett. Math. Phys.,4, No. 4, 301–306 (1980).Google Scholar
  99. 99.
    J. W. B. Hughes, “SU(2) shift operators and representations of Spl(2, 1),” Group Theor. Math. Phys., Kiryat Anavim, 1979, Bristol, e.a., pp. 320–322.Google Scholar
  100. 100.
    J. W. B. Hughes, “Representations of osp (2, 1) and the metaplectic representations,” J. Math. Phys., No. 2, 245–250 (1981).Google Scholar
  101. 101.
    J. P. Hurni and B. Morel, “Irreducible representations of the superalgebras of type II,” J. Math. Phys.,23, No. 12, 2236–2243 (1982).Google Scholar
  102. 102.
    J. P. Hurni and B. Morel, “Irreducible representations of SU(m/n),” J. Math. Phys.,24, No. 1, 157–163 (1983).Google Scholar
  103. 103.
    V. G. Kac, “A sketch of Lie superalgebras theory,” Commun. Math. Phys.,53, No. 1, 31–64 (1977).Google Scholar
  104. 104.
    V. G. Kac, “Lie superalgebras,” Adv. Math.,26, 8–96 (1977).Google Scholar
  105. 105.
    V. G. Kac, “Infinite-dimensional algebras, Dedekind's η-function, classical Moebius function, and the very strange formula,” Adv. Math.30, 85–136 (1978).Google Scholar
  106. 106.
    V. G. Kac, “Representations of classical Lie superalgebras,” Lect. Notes Math.,676, 597–626 (1978).Google Scholar
  107. 107.
    V. G. Kac, “On simplicity of certain infinite-dimensional Lie algebras,” Bull. Am. Math. Soc,2, No. 2, 311–314 (1980).Google Scholar
  108. 108.
    V. G. Kac, “An euclidation of ‘Infinite-dimensional algebras ... and the very strange formula,’ E8 (1) and the cube root of the modular invariant theory,” Adv. Math.,35, 264–273 (1980).Google Scholar
  109. 109.
    V. G. Kac, “Some problems on infinite-dimensional Lie algebras and their representations,” Lect. Notes Math.,933, 117–126 (1983).Google Scholar
  110. 110.
    V. G. Kac, Infinite-Dimensional Lie Algebras. An Introduction, Birkhauser, New York (1983).Google Scholar
  111. 111.
    V. G. Kac, “Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras,” Commun. Alg.,5, 1375–1400 (1977).Google Scholar
  112. 112.
    I. Kaplansky, “Superalgebras,” Pac. J. Math.,86, No. 1, 93–98 (1980).Google Scholar
  113. 113.
    I. Kaplansky, “Some simple Lie algebras of characteristic 2,” Lect. Notes Math.,933, 127–129 (1982).Google Scholar
  114. 114.
    J. L. Koszul, “Les algebras de Lie gradues de type sl(n, 1) et l'operateur de A. Capelli,” C. R. Acad. Sci.,292, Ser. 1, No. 2, 139–141 (1981).Google Scholar
  115. 115.
    F. W. Lemiere and J. Patera, “Congruence classes of finite-dimensional representations of simple Lie superalgebras,” J. Math. Phys.,23, No. 8, 1409–1414 (1982).Google Scholar
  116. 116.
    J. Lukierski, “Graded orthosymplectic geometry and invariant fermionic σ-models,” Lett. Math. Phys.,3, No. 2, 135–140 (1979).Google Scholar
  117. 117.
    J. Lukierski, “Complex and quaternionic supergeometry,” Supergravity Proc. Workshop, Stony Brook (1975), Amsterdam e.a. (1979), pp. 85–92.Google Scholar
  118. 118.
    J. Lukierski, “Quaternionic and supersymmetric σ-models,” Lect. Notes Math.,836, 221–245 (1980).Google Scholar
  119. 119.
    M. Marcu, “The tensor product of two irreducible representations of the Spl(2, 1) superalgebra,” J. Math. Phys.,21, No. 6, 1284–1292 (1980).Google Scholar
  120. 120.
    M. Marcu, “The representations of spl(2, 1) — an example of representations of basic superalgebras,” J. Math. Phys.,21, No. 6, 1277–1283 (1980).Google Scholar
  121. 121.
    Y. Ne'eman and J. Tierry-Mieg, “Gange asthenodynamics (SU(2/1)). Classical discussion,” Lect. Notes Math.,836, 318–348 (1980).Google Scholar
  122. 122.
    Tch. D. Palev, “Canonical realizations of Lie superalgebras: ladder representations of the Lie superalgebra A(m, n),” J. Math. Phys.,22, No. 10, 2127–2131 (1981).Google Scholar
  123. 123.
    Tch. D. Palev, “Fock space representations of the Lie superalgebra A(o, n),” J. Math. Phys.,21, No. 6, 1293–1298 (1980).Google Scholar
  124. 124.
    Tch. D. Palev, “On a class of nontypical representations of the Lie superalgebra A(1, 0),” Godishn. Vyssh. Uchebn. Zaved., Tekh. Fiz., 1979,16, 103–104 (1980).Google Scholar
  125. 125.
    M. Parker, “Real forms of simple finite-dimensional classical Lie superalgebras,” J. Math. Phys.,21, No. 4, 689–697 (1980).Google Scholar
  126. 126.
    P. Ramond and J. Schwarz, “Classification of dual model gauge algebras,” Phys. Lett.,B64, No. 1, 75–77 (1976).Google Scholar
  127. 127.
    V. Rittenberg and M. Schennert, “Elementary construction of graded Lie groups,” J. Math. Phys.,19, No. 3, 709–713 (1978).Google Scholar
  128. 128.
    V. Rittenberg and M. Schennert, “A remarkable connection between the representations of the Lie superalgebras Osp (1, 2n) and the Lie algebras 0 (2n+1),” Comm. Math. Phys.,83, 1–9 (1982).Google Scholar
  129. 129.
    V. Rittenberg and D. Wyler, “Sequence of Z2 ⊕ Z2-graded Lie algebras and superalgebras,” J. Math. Phys.,19, No. 10, 2193–2200 (1978).Google Scholar
  130. 130.
    M. Scheunert, “The theory of Lie superalgebras,” Lect. Notes Math.,716 (1979).Google Scholar
  131. 131.
    A. N. Sergeev, “The centre of enveloping algebra for Lie superalgebra Q(n, C),” Lett. Math. Phys.,7, 177–179 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • D. A. Leites

There are no affiliations available

Personalised recommendations