Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Systolic computation of interpolating polynomials

Systolische Berechnung von interpolierenden Polynomen

  • 24 Accesses

  • 9 Citations


Several time-optimal and spacetime-optimal systolic arrays are presented for computing a process dependence graph corresponding to the Aitken algorithm. It is shown that these arrays also can be used to compute the generalized divided differences, i.e., the coefficients of the Hermite interpolating polynomial. Multivariate generalized divided differences are shown to be efficiently computed on a 2-dimensional systolic array. The techniques also are applied to the Neville algorithm, producing similar results.


Zur Berechnung eines zum Aitken-Algorithmus gehörigen Prozeßabhängigkeitsgraphen werden einige Zeit-optimale und Raum-Zeit-optimale systolische Felder vorgestellt. Es wird gezeigt, daß man diese Felder auch zur Berechnung verallgemeinerter dividierter Differenzen verwenden kann, wie sie als Koeffizienten des Hermiteschen Interpolationspolynoms auftreten. Die effiziente Berechnung multivariater verallgemeinerter dividierter Differenzen auf einem zweidimensionalen systolischen Feld wird gezeigt. Für den Neville-Algorithmus ergeben die Techniken ähnliche Ergebnisse.

This is a preview of subscription content, log in to check access.


  1. [1]

    Annaratone, A. M., Arnould, E., Gross, T., Kung, H.-T., Lam, M., Menzilcioglu, O., Webb, J., The WARP Computer: Architecture, Implementation, and Performance, IEEE Trans. on Computers, C-36, No. 12, pp. 1523–1538, December 1987.

  2. [2]

    Berezin, I. S., Zhidkov, N. P., Computing Methods, Vol. 1, Addison-Wesley, 1965.

  3. [3]

    Cappello, P. R., Steiglitz, K., Unifying VLSI Array Designs with Linear Transformations of Space-Time, in Advances in Computer Research, edited by F. P. Preparata, Vol. 2, pp. 23–65, JAI Press, 1984.

  4. [4]

    Fortes, J. A. B., Moldovan D. I., Parallelism detected and algorithm transformation techniques useful for VLSI architecture design, J. Parallel Distrib. Comput.,2, pp. 277–301, August 1985.

  5. [5]

    Foulser, D. E., Schreiber, R., “The Saxpy Matrix-1: a General-Purpose Systolic Computer,” IEEE Computer,20, No. 7, pp. 35–43, July 1987.

  6. [6]

    Garey, M. R., Johnson, D. S., Computers and Intractability, Freeman, 1979.

  7. [7]

    Gasca, M., Maeztu, J. I., On Lagrange and Hermite Interpolation inR k,Numerische Mathematik,39, No. 1, pp. 1–14, 1982.

  8. [8]

    Guenther, R. B., Roetman, E. L., Some observations on interpolation in higher dimensions, Mathematics of Computation,24, No. 111, pp. 517–527, July 1970.

  9. [9]

    Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill, 1956.

  10. [10]

    IMS T800 transputer, Rpt. 72 TRN 117 01, INMOS Ltd., Almondsbury, Bristol, UK, November 1986.

  11. [11]

    Krogh, F., Efficient algorithms for polynomial interpolation and divided differences, Mathematics of Computation,24, No. 109, pp. 185–190, January 1970.

  12. [12]

    McKeown, G. P., Iterated interpolation using a systolic array, ACM Transactions on Mathematical Software,12, No. 2, pp. 162–170, June 1986.

  13. [13]

    Miranker, W. L., Winkler, A., Spacetime representations of computational structures, Computing,32, pp. 93–114, 1984.

  14. [14]

    Moldovan, D. I., On the Analysis and Synthesis of VLSI Algorithms, IEEE Transactions on Computers, C-31, pp. 1121–1126, November 1982.

  15. [15]

    Moldovan, D. I., On the Design of Algorithms for VLSI Systolic Arrays”, Proc. IEEE,71, No. 1, pp. 113–120, January 1983.

  16. [16]

    Quinton, P., Automatic synthesis of systolic arrays from uniform recurrent equations, Proc. 11th Ann. Symp. on Computer Architecture, pp. 208–214, 1984.

  17. [17]

    Rao, S. K., Regular Iterative Algorithms and Their Implementation on Processor Arrays, Ph.D. dissertation, Stanford University, October, 1985.

  18. [18]

    Salzer, H. E., Some New Divided Difference Algorithms, inOn Numerical Approximation, edited by Langer, R. E., pp. 61–98, The University of Wisconsin Press, 1956.

  19. [19]

    Salzer, H. E., Divided differences for functions of two variables for irregularly spaced arguments, Numerische Mathematik,6, No. 2, pp. 68–77, 1964.

  20. [20]

    Schumaker, L. L., Fitting Surface to Scattered Data, in Approximation Theory, Vol. II, edited by G. G. Lorentz, C. K. Chui, and L. L. Schumaker, pp. 203–268, Academic Press, 1976.

  21. [21]

    Thacher, Jr., H. C., Derivation of interpolation formulas in several independent variables, Annals of New York Academy of Sciences,86, No. 3, pp. 758–775, May 1960.

  22. [22]

    Tsao, N. K., R. Prior, On Multipoint Numerical Interpolation, ACM Transactions on Mathematical Software, Vol. 4, No. 1, pp. 51–56, March 1978.

Download references

Author information

Additional information

This work was supported in part by the Office of Naval Research under contracts N00014-84-K-0664 and N00014-85-K-0553.

Supported by the National Science Foundation under Grants Nos. US NSF-MIP-8410110, US NSF DCR85-09970, and US NSF CCR-8717942, and by AT&T Grant AT&T AFFL67Sameh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cappello, P.R., Gallopoulos, E. & Koç, Ç.K. Systolic computation of interpolating polynomials. Computing 45, 95–117 (1990). https://doi.org/10.1007/BF02247877

Download citation

AMS Subject Classifications

  • 65D05
  • 68Q80
  • 68N99

Key words

  • Newton interpolation
  • Hermite interpolation
  • Aitken's algorithm
  • Neville's algorithm
  • systolic array