Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Environmental conditions and structure of some types of convective mesosystems observed over Venezuela

Umgebungsverhältnisse und Struktur einiger über Vernezuela beobachteter Typen von konvektiven Mesosystemen

  • 46 Accesses

  • 11 Citations

Summary

A classification of storms in squall lines, thunderstorm clusters, and isolated thunderstorms was made using radar data collected during the second phase of the Venezuelan International Meteorological and Hydrological Experiments (VIMHEX-1972). The near-environmental conditions in advance of these types of storms are examined. The modification of the environment, as deduced from the dry static energy, moist static energy, latent heat content and relative winds is also studied, and a conceptual model for the storms is presented. Finally, some aspects of storm movement are described.

Zusammenfassung

Mit Verwendung von in der zweiten Phase der Venezueler internationalen meteorologischen und hydrologischen Experimente (VIMHEX-1972) gesammelten Radar-Daten wurde eine Klassifikation von Unwettern in Böenlinien, in Gewittergruppen und in isolierten Gewittern vorgenommen. Die Verhältnisse in der nahen Umgebung während des Vorrückens dieser Typen von Unwetter werden untersucht. Die Modifikation der Umgebung wird, abgeleitet aus der trocken-statischen Energie, aus der feucht-statischen Energie, aus dem latenten Wärmegehalt und aus den relativen Winden, ebenfalls studiert und ein für die Unwetter entwickeltes Modell wird vorgelegt. Schließlich werden einige Aspekte der Bewegung der Unwettergebilde beschrieben.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Arakawa, A., Schubert, W.: Interaction of a Cumulus Cloud Ensemble With the Large-Scale Environment. Part I. J. Atmos. Sci.31, 674–701 (1974).

  2. 2.

    Betts, A. K.: Further Comments on “A Comparison of the Equivalent Potential Temperature and the Static Energy”. J. Atmos. Sci.31, 1713–1715 (1974).

  3. 3.

    Betts, A. K.: The Thermodynamic Transformation of the Tropical Subcloud Layer by Precipitation and Downdrafts. J. Atmos. Sci.33, 1008–1020 (1976).

  4. 4.

    Betts, A. K.: Modelling Subcloud Layer Structure and Interaction With a Shallow Cumulus Layer. J. Atmos. Sci.33, 2363–2382 (1976).

  5. 5.

    Betts, A. K., Grover, R. W., Moncrieff, M. W.: Structure and Motion of Tropical Squall-Lines Over Venezuela. Quart. J. R. Met. Soc.102, 395–404 (1976).

  6. 6.

    Betts, A. K., Miller, R. D.: VIMHEX-1972 Rawinsonde Data. Research Report, Dept. of Atmospheric Science, Colorado State University, Ft. Collins (1975).

  7. 7.

    Betts, A. K., Stevens, M. A.: Rainfall and Radar Echo Statistics: VIMHEX-1972. Research Report, Dept. of Atmospheric Science, Colorado State University, Ft. Collins (1974).

  8. 8.

    Browning, K. A.: Airflow and Precipitation Trajectories Within Severe Local Storms Which Travel to the Right of the Winds. J. Atmos. Sci.21, 634–639 (1964).

  9. 9.

    Browning, K. A., Ludlam, F. H.: Airflow in Convective Storms. Quart. J. R. Met. Soc.88, 117–135 (1962).

  10. 10.

    Carlson, T. N., Ludlam, F. H.: Conditions for the Occurrence of Severe Local Storms. Tellus20, 203–226 (1968).

  11. 11.

    Chisholm, A. J., Renick, J. H.: The Kinematics of Multicell and Supercell Alberta Hailstorms. Alberta Hail Studies, 1972, Research Council of Alberta Hail Studies Rep. No. 72-2, 24–31 (1972).

  12. 12.

    Cruz, L. A.: Venezuelan Rainstorms as Seen by Radar. J. Appl. Met.12, 119–126 (1973).

  13. 13.

    Fernandez, W., Thorpe, A. J.: An Evaluation of Theories of Storm Motion Using Observations of Tropical Convective Systems. Mon. Weath. Rev.107 (1979).

  14. 14.

    Green, J. S. A., Pearce, R. P.: Cumulonimbus Convection in Shear. Tech. Note No. 12, Dept. of Meteorology, Imperial College, London (1962).

  15. 15.

    Hane, C. E.: The Squall Line Thunderstorm: Numerical Experimentation. J. Atmos. Sci.30, 1672–1690 (1973).

  16. 16.

    Klemp, J. B., Wilhelmson, R. B.: The Simulation of Three-Dimensional Convective Storm Dynamics. J. Atmos. Sci.35, 1070–1096 (1978).

  17. 17.

    Ludlam, F. H.: Severe Local Storms: A Review. Meteor. Monographs, Vol. 5, No. 27, Amer. Met. Soc., pp. 1–30 (1963).

  18. 18.

    Madden, R. A., Robitaille, F. E.: A Comparison of the Equivalent Potential Temperature and the Static Energy. J. Atmos. Sci.27, 327–329 (1970).

  19. 19.

    Mansfield, D. A.: Squall Lines Observed in GATE. Quart. J. R. Met. Soc.103, 569–574 (1977).

  20. 20.

    Marwitz, J. D.: The Structure and Motion of Severe Hailstorms. Part I: Supercell Storms. J. Appl. Met.11, 166–179 (1972).

  21. 21.

    Marwitz, J. D.: The Structure and Motion of Severe Hailstorms. Part II: Multicell Storms. J. Appl. Met.11, 180–188 (1972).

  22. 22.

    Miller, R. C.: Notes on Analysis and Severe Storm Forecasting Procedures of the Military Weather Warning Center. Air Weather Service Tech. Report 200 (1967).

  23. 23.

    Miller, M. J., Betts, A. K.: Travelling Convective Storms Over Venezuela. Mon. Weath. Rev.105, 833–848 (1977).

  24. 24.

    Miller, M. J., Pearce, R. P.: A Three Dimensional Primitive Equation Model of Cumulonimbus Convection. Quart. J. R. Met. Soc.100, 133–154 (1974).

  25. 25.

    Moncrieff, M. W.: The Dynamical Structure of Two-Dimensional Steady Convection in Constant Vertical Shear. Quart. J. R. Met. Soc.104, 543–567 (1978).

  26. 26.

    Moncrieff, M. W., Green, J. S. A.: The Propagation and Transfer Properties of Steady Convective Overturning in Shear. Quart. J. R. Met. Soc.98, 336–352 (1972).

  27. 27.

    Moncrieff, M. W., Miller, M. J.: The Dynamics and Simulation of Tropical Cumulonimbus and Squall Lines. Quart. J. R. Met. Soc.,102, 373–394 (1976).

  28. 28.

    Newton, C. W.: Dynamics of Severe Convective Storms. Meteor. Monographs, Vol. 5, No. 27, Amer. Met. Soc., pp. 33–58 (1963).

  29. 29.

    Newton, C. W., Newton, H. R.: Dynamical Interactions Between Large Convective Clouds and Environment With Vertical Shear. J. Met.16, 483–496 (1959).

  30. 30.

    Pastushkov, R. S.: The Effect of Vertical Wind Shear on the Evolution of Convective Clouds. Quart. J. R. Met. Soc.101, 281–291 (1975).

  31. 31.

    Riehl, H.: Controls of the Venezuelan Rainy Season. Bull. Amer. Met. Soc.54, 9–12 (1973).

  32. 32.

    Riehl, H.: Venezuelan Rain Systems and the General Circulation of the Summer Tropics I: Rain Systems. Mon. Weath. Rev.105, 1402–1420 (1977).

  33. 33.

    Riehl, H.: Venezuelan Rain Systems and the General Circulation of the Summer Tropics II: Relations Between Low and High Latitudes. Mon. Weath. Rev.105, 1421–1433 (1977).

  34. 34.

    Riehl, H., Lueckefedt, W.: Precipitation and Thermodynamic Structure of Rain Events in Venezuela. Mon. Weath. Rev.104, 1162–1166 (1976).

  35. 35.

    Riehl, H., Cruz, L., Mata, M., Muster, C.: Precipitation Characteristics During the Venezuela Rainy Season. Quart. J. R. Met. Soc.99, 746–757 (1973).

  36. 36.

    Schlesinger, R. E.: A Three-Dimensional Numerical Model of an Isolated Thunderstorm: Part I. Comparative Experiments for Variable Ambient Wind Shear. J. Atmos. Sci.35, 690–713 (1978).

  37. 37.

    Takeda, T.: Numerical Simulation of a Precipitating Convective Cloud: The Formation of a Long-Lasting Cloud. J. Atmos. Sci.28, 350–356 (1971).

  38. 38.

    Thorpe, A. J., Miller, M. J.: Numerical Simulations Showing the Role of the Downdraught in Cumulonimbus Motion and Splitting. Quart. J. R. Met. Soc.104, 873–893 (1978).

  39. 39.

    Wilhelmson, R.: The Life Cycle of a Thunderstorm in Three Dimensions. J. Atmos. Sci.31, 1629–1651 (1974).

  40. 40.

    Zipser, E. J.: The Role of Organized Unsaturated Convective Downdrafts in the Structure and Rapid Decay of an Equatorial Disturbance. J. Appl. Met.8, 799–814 (1969).

  41. 41.

    Zipser, E. J.: Mesoscale and Cloud-Scale Downdrafts as Distinct Components of Squall-Line Structure. Mon. Weath. Rev.105, 1568–1589 (1977).

Download references

Author information

Additional information

With 4 Figures

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernandez, W. Environmental conditions and structure of some types of convective mesosystems observed over Venezuela. Arch. Met. Geoph. Biokl. A. 29, 249–267 (1980). https://doi.org/10.1007/BF02247765

Download citation

Keywords

  • Waste Water
  • Heat Content
  • Radar
  • Water Pollution
  • Conceptual Model