Advertisement

Fronts in the vicinity of the tropopause

  • Richard J. Reed
  • Edwin F. Danielsen
Article

Summary

From a study of five cases of pronounced fronts in the upper troposphere, it is concluded that the “waterspout” model offers the most satisfactory solution to the problem of connecting frontal boundaries and tropopauses. Composite cross sections of temperature, potential temperature, normal wind component and potential vorticity are presented for the five cases. On the basis of the potential vorticity measurements it is suggested that the most likely explanation for the formation of the high-level front is a folding of the tropopause.

Keywords

Climate Change Waste Water Water Management Vorticity Water Pollution 

Zusammenfassung

Auf Grund einer Untersuchung von fünf Fällen ausgesprochener Fronten in der höheren Troposphäre wird der Schluß gezogen, daß die „Wasserhosen”-Vorstellung am besten den Zusammenhang zwischen Fronten und Tropopausen darstellt. Kombinierte Querschnitte von Temperatur, potentieller Temperatur, normaler Windkomponente und potentieller Vorticity werden für die fünf Fälle vorgelegt. Auf Grund der Bestimmungen der potentiellen Vorticity wird dargelegt, daß die wahrscheinlichste Erklärung für die Entstehung einer Front in der Höhe in der Annahme einer Faltung der Tropopause besteht.

Résumé

En se fondant sur cinq cas de fronts très nets de la haute troposphère, les auteurs concluent que le schéma de trombe constitue la meilleure solution pour représenter la liaison entre zones frontales et tropopause. Ils donnent des profils combinés de température, de température potentielle, de composantes normales du vent et de vorticity potentielle pour les cinq cas. Ils montrent à l'aide de mesures de la vorticity potentielle que l'explication la plus probable de la formation d'un front en altitude consiste à admettre un plissement de la tropopause.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berggren, R.: The Distribution of Temperature and Wind Connected with Active Tropical Air in the Higher Troposphere and Some Remarks Concerning Clear Air Turbulence at High Altitude. Tellus4, 43–54 (1952).Google Scholar
  2. 2.
    —: On Temperature Frequency Distribution in the Free Atmosphere and a Proposed Model for Frontal Analysis. Tellus5, 95–101 (1953).CrossRefGoogle Scholar
  3. 3.
    Bjerknes, J., andE. Palmén: Investigations of Selected European Cyclones by Means of Serial Ascents. Geofys. Publ.12, 62 (1937).Google Scholar
  4. 4.
    Bjerknes, V.: Dynamic Meteorology and Hydrography. Part II —Kinetmatics. Washington, Carnegie Institution, 175 pp. (1911).Google Scholar
  5. 5.
    Dickson, R. R.: A Case Study of the Jet Stream. Bull. Amer. Met. Soc.36, 195–204 (1955).CrossRefGoogle Scholar
  6. 6.
    Endlich, R.: Flight Aspects of Jet Streams and Mountain Waves, Part I. Abstract in Bull. Amer. Met. Soc.37, 539 (1956).Google Scholar
  7. 7.
    Kleinschmidt, E.: Die Entstehung einer Höhenzyklone über Nordamerika. Tellus7, 96–111 (1955).CrossRefGoogle Scholar
  8. 8.
    Matthewman, A. G.: Meteorological Office Discussion. Frontal Analysis in the Higher Troposphere and the Lower Stratosphere. Met. Mag.83, 87 (1954).Google Scholar
  9. 9.
    Newton, C. W.: Frontogenesis and Frontolysis as a Three-Dimensional Process. J. Met.11, 449–461 (1954).CrossRefGoogle Scholar
  10. 10.
    Palmén, E.: Aerologische Untersuchungen der atmosphärischen Störungen. Mitt. met. Inst. Univ. Helsingf. No. 25 (1933).Google Scholar
  11. 11.
    —: On the Distribution of Temperature and Wind in the Upper Westerlies. J. Met.5, 20–27 (1948).CrossRefGoogle Scholar
  12. 12.
    Palmén, E.: Vertical Circulation and Release of Kinetic Energy during the Development of Hurricane Hazel into an Extratropical Storm. Studies in Weather Analysis and Forecasting. Final Report under Contract AF 19 (604)-1293, University of Chicago (1957).Google Scholar
  13. 13.
    —, andK. M. Nagler: The Formation and Structure of a Largescale Disturbance in the Westerlies. J. Met.6, 227–242 (1949).Google Scholar
  14. 14.
    —, andC. W. Newton: A Study of the Mean Wind and Temperature Distribution in the Vicinity of the Polar Front in Winter. J. Met.5, 220–226 (1948).CrossRefGoogle Scholar
  15. 15.
    Reed, R. J.: A Study of a Characteristic Type of Upper-Level Frontogenesis. J. Met.12, 226–237 (1955).CrossRefGoogle Scholar
  16. 16.
    Riehl, H.: Correspondence. J. Met.13, 313–314 (1956).CrossRefGoogle Scholar
  17. 17.
    —, andH. Maynard: Exploration of the Jet Stream by Aircraft during the 1952–1953 Winter. J. Met.12, 26–35 (1955).CrossRefGoogle Scholar
  18. 18.
    Sawyer, J. S.: Day-to-day Variations in the Tropopause. Geophys. Mem.11, 40 (1954).Google Scholar
  19. 19.
    —: The Free Atmosphere in the Vicinity of Fronts. Geophys. Mem.12, 24 (1955).Google Scholar
  20. 20.
    Staley, D. O.: Evaluation of the Physical Processes Occurring at and near the Tropopause. Unpublished Thesis. Seattle, University of Washington, 121 pp. (1956).Google Scholar
  21. 21.
    Van Mieghem, J.: Analyse aérologique d'un front froid remarquable. Mém. Inst. Mét. Belg.VII, 85 (1937).Google Scholar

Copyright information

© Springer-Verlag 1959

Authors and Affiliations

  • Richard J. Reed
    • 1
  • Edwin F. Danielsen
    • 1
  1. 1.Department of Meteorology and ClimatologyUniversity of WashingtonSeattle

Personalised recommendations