Skip to main content
Log in

Oral ethanol self-administration in rats is reduced by the administration of dopamine and glutamate receptor antagonists into the nucleus accumbens

  • Original Investigations
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The purpose of this study was to assess the role of endogenous dopamine and glutamate systems within the nucleus accumbens in modulating responses for oral ethanol reinforcements (10% w/v) in a free-choice operant task. Pretreatment with both systemic (100 µg/kg) and intra-nucleus accumbens microinjection of fluphenazine (2 and 4 µg), a dopamine receptor antagonist, significantly decreased responding for ethanol, without significantly affecting responses for water. Ethanol self-administration was also attenuated by microinjection into the nucleus accumbens of 2-amino-5-phosphopentanoic acid (AP-5, 3 and 6 µg), a competitive NMDA receptor antagonist. These results suggest that dopamine and glutamate neurotransmission in the nucleus accumbens may regulate ethanol self-administration and its reinforcing effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boismare F, Daoust M, Moore N, Saligaut C, Lhuintre JP, Chretien P, Durlach J (1984) A homotaurine derivative reduces the voluntary intake of ethanol by rats: are cerebral GABA receptors involved? Pharmacol Biochem Behav 21:787–789

    PubMed  Google Scholar 

  • Brodie MS, Shefer SA, Dunwiddie TV (1990) Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro. Brain Res 508:65–69

    Article  PubMed  Google Scholar 

  • Brown ZW, Amit Z (1977) The effects of selective catecholamine depletions by 6-hydroxydopamine on ethanol preference in rats. Neurosci Lett 5:333–336

    Article  Google Scholar 

  • Brown ZW, Gill K, Abitbol M, Amit Z (1982) Lack of effect of dopamine receptor blockade on voluntary ethanol consumption in rats. Behav Neural Biol 36[3]:291–294

    Article  PubMed  Google Scholar 

  • Callaway CW, Hakan RL, Heinricksen SJ (1991) Distribution of amygdala input to the nucleus accumbens septi: an electrophysiological investigation. J Neural Transm 83:215–225

    Article  Google Scholar 

  • Cappell H, Herman CP (1972) Alcohol and tension reduction. QJ Stud Alcohol 33:33–64

    Google Scholar 

  • Carter CJ (1980) Glutamatergic pathways from the medial prefrontal cortex to the anterior striatum, nucleus accumbens and substantia nigra. Br J Pharmacol 70:50P-51P

    Google Scholar 

  • Christie MJ, James LB, Beart PM (1985) An excitant amino acid projection from the medial cortex tot he anterior part of the nucleus accumbens in the rat. J. Neurochem 45:477–482

    PubMed  Google Scholar 

  • Christie MJ, Summers RJ, Stephenson JA, Cook CJ, Beart PM (1987) Excitatory amino acid projections in the nucleus accumbens septi in the rat: A retrograde transport study utilizing D[3H] GABA. Neuroscience 22[2]:425–439

    Article  PubMed  Google Scholar 

  • Cloninger CR (1987) Neurogenetic and adaptive mechanisms in alcoholism. Science 236:410–416.

    Google Scholar 

  • Corcoran ME, Lewis J, Fibiger HC (1983) Forebrain noradrenaline and oral self-administration of ethanol by rats. Behav Brain Res 8:1–21

    Article  PubMed  Google Scholar 

  • Cotman CW, Monaghan DT, Ottersen OP, Storm-Mathisen J (1987) Anatomical organization of excitatory amino acid receptors and their pathways. TINS 10[7]:273–280

    Google Scholar 

  • Donzanti BA, Uretsky NJ (1983) Effects of excitatory amino acids on locomotor activity after bilateral microinjection into the rat nucleus accumbens: possible dependence on dopaminergic mechanisms. Neuropharmacology 22[8]:971–981

    Article  PubMed  Google Scholar 

  • Fadda F, Argiolas A, Melis MR, DeMontis G, Gessa GL (1983) Suppression of voluntary ethanol consumption in rats by gammabutyrolactone. Life Sci 32:1471–1477

    Article  PubMed  Google Scholar 

  • Fadda, F, Mosca E, Colombo G, Gessa GL (1989) Effects of spontaneous ingestion of ethanol on brain dopamine metabolism. Life Sci 44:281–287

    Article  PubMed  Google Scholar 

  • Ferraro TN, Carozza DP, Vogel WH (1991) In vivo microdialysis study of brain ethanol concentrations in rats following oral self-administration. Alcohol Clin Exp Res 15[3]:504–507

    PubMed  Google Scholar 

  • Fuller TA, Ruschen FT, Price JL (1987) Source of presumptive glutamatergic/aspartergic afferents to the rats ventral striatopallidal region. J Comp Neurol 258:317–338

    Article  PubMed  Google Scholar 

  • Geller I (1973) Effects of para-chlorophenylalanine and 5-hydroxytryptophane on alcohol intake in rats. Pharmacol Biochem Behav 1:361–365

    Article  PubMed  Google Scholar 

  • Gerber GJ, Sing J, Wise RA (1981) Pimozide attenuates lever-pressing for water reinforcement in rats. Pharmacol Biochem Behav 14:201–205

    Article  PubMed  Google Scholar 

  • Gessa GL, Montoni F, Collu M, Vargiu L, Mereu G (1985) Low doses of ethanol activate dopaminergic neurons in the ventral tegmental area. Brain Res 348:201–203

    Article  PubMed  Google Scholar 

  • Glickman SE, Schiff BB (1967) A biological theory of reinforcement. Psychol Rev 74:81–108

    PubMed  Google Scholar 

  • Hamilton MH, De Belleroche JS, Gardiner IM, Herber LJ (1986) Stimulatory effect of N-methyl asparate on locomotor activity and transmitter release from rat nucleus accumbens. Pharmacol Biochem Behav 25:943–948

    Article  PubMed  Google Scholar 

  • Hubbell CL, Marlin SH, Spitalnic SJ, Abelson ML, Wild KD, Reid LD (1991) Opioidergic, serotonergic and dopaminergic manipulations and rats' intake of a sweetened alcoholic beverage. Alcohol 8:355–367

    Article  PubMed  Google Scholar 

  • Hutson PH, Bristow LJ, Thorn L, Tricklebank (1991) R-(+)-HA-966, a glycine/NMDA receptor antagonist, selectively blocks the activation of the mesolimbic dopamine system by amphetamine. Br J Pharmacol 103:2037–2044

    PubMed  Google Scholar 

  • Hwang BH, Lumeng L, Wu JY, Li T-K (1990) Increased number of GABAergic terminals in the nucleus accumbens is associated with alcohol preference in rats. Alcohol Clin Exp Res 14(4):503–507

    PubMed  Google Scholar 

  • Imperato A, DiChiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:221–229

    Google Scholar 

  • Kelly AE, Domesick VB (1982) The distribution of projection from the hippocampal formation to the nucleus accumbens in the rat: an anterograde and retrograde horseradish peroxidase study. Neuroscience 7:2321–2335

    Article  PubMed  Google Scholar 

  • Kelly AE, Domesick VB, Nauta WJH (1982) The amygdalostriatal projection in the rat—an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7[3]:615–630

    Article  PubMed  Google Scholar 

  • Koob GF (1992) Neurobiological mechanisms in cocaine and opiate dependence. In: O'Brien CP, Jaffe TH (eds) Advances in understanding the addictive state. Raven Press, New York, pp 79–92

    Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    PubMed  Google Scholar 

  • Koob GF, Goeders N (1989) Neuroanatomical substrates of drug self-administration. In: Liebman JM, Cooper SJ (eds) Neuropharmacological basis of reward. Oxford University Press, Oxford, pp 214–263

    Google Scholar 

  • Kornetsky C, Bain GT, Unterwald EM, Lewis MJ (1988) Brain stimulation reward: effects of ethanol. Alcohol Clin Exp Res 12[5]:609–616

    PubMed  Google Scholar 

  • Linesman MA (1990) Effects of dopaminergic agents on alcohol consumption by rats in a limited access paradigm. Psychopharmacology 100:195–200

    PubMed  Google Scholar 

  • Managhan DT, Olverman HJ, Nguyen L, Watkins JC, Cotman CW (1988) Two classes of N-methyl-D-asparate recognition sites: differential distribution and differential regulation by glycine. Proc Natl Acad Sci USA 85:9836–9840

    PubMed  Google Scholar 

  • Maragos WF, Penney JB, Young AB (1988) Anatomic correlation of NMDA and3H-TCP-labeled receptors in rat brain. J Neurosci 8[2]:493–501

    PubMed  Google Scholar 

  • Mogenson G, Jones DL, Yim CY (1982) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  Google Scholar 

  • Mudar PJ, LeCann NC, Czirr SA, Hubbell CL, Reid LD (1986) Methadone, pentobarbital, pimozide and ethanol-intake. Alcohol 3:303–308

    Article  PubMed  Google Scholar 

  • Murphy JM, McBride WJ, Lumeng L, Li T-K (1987) Contents of monoamines in forebrain regions of alcohol-preferring (P) and non-preferring (NP) lines of rats. Pharmacol Biochem Behav 26:389–392

    Article  PubMed  Google Scholar 

  • Pellegrino LJ, Cushman AJ (1979) A stereotaxic atlas of the rat brain. Century-Crofts, New York

    Google Scholar 

  • Pfeffer AO, Samson HH (1988) Haloperidol and apomorphine effects on ethanol reinforcement in free-feeding rats. Pharmacol Biochem Behav 29:343–350

    Article  PubMed  Google Scholar 

  • Pulvirenti L, Swerdlow NR, Koob GF (1991) Nucleus accumbens NMDA antagonist decreases locomotor activity produced by cocaine, heroin, or accumbens dopamine, but not caffeine. Pharmacol Biochem Behav 40:841–845

    Article  PubMed  Google Scholar 

  • Reid LD, Hunter GA (1984) Morphine and naloxone modulate intake of ethanol. Alcohol 1:33–37

    Article  PubMed  Google Scholar 

  • Rockman GE, Amit Z, Brown W, Bourque C, Ogren SO (1982) An investigation of the mechanisms of action of 5-hydroxytryptamine in the suppression of ethanol intake. Neuropharmacology 21:341–347

    Article  PubMed  Google Scholar 

  • Samson HH (1986) Initiation of ethanol reinforcement using a sucrose-substitution procedure in food- and water-sated rats. Alcohol Clin Exp Res 10:436–442

    PubMed  Google Scholar 

  • Samson HH, Tolliver GA, Pfeffer AO, Sadeghi KG, Mills FG (1987) Oral ethanol reinforcement in the rat: effect of the partial inverse benzodiazepine agonist RO15-4513. Pharmacol Biochem Behav 27:517–519

    Article  PubMed  Google Scholar 

  • Swerdlow NR, Koob GF (1984) Neural substrates of apomorphine-stimulated locomotor activity following denervation of the nucleus accumbens. Life Sci 35:2537–2544

    Article  PubMed  Google Scholar 

  • Walass I (1981) Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain. Neuroscience 6[3]:399–405

    Article  PubMed  Google Scholar 

  • Walass I, Fonnum F (1979) The effects of surgical and chemical lesions on neurotransmitter caudidates in the nucleus accumbens of the rat. Neuroscience 4:209–216

    Article  PubMed  Google Scholar 

  • Watkins JC, Mogenson GJ (1981) Response of ventral pallidal neurons to amygdala stimulation and its modulation by dopamine projections to nucleus accumbens. Annu Rev Pharmacol Toxicol 21:165–204

    Article  PubMed  Google Scholar 

  • Winer BJ (1971) Statistical principles in experimental design. McGraw-Hill, New York

    Google Scholar 

  • Wise RA, Rompre P-P (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    Article  PubMed  Google Scholar 

  • Wise RA, Spindler J, DeWit H, Gerber GJ (1978) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201:262–264

    PubMed  Google Scholar 

  • Wozniak KM, Pert A, Mele A, Linnoila M (1991) Focal application of alcohols elevate extracellular dopamine in rat brain: a microdialysis study. Brain Res 540:31–40

    Article  PubMed  Google Scholar 

  • Yim CY, Mogenson GJ (1983) Response of ventral pallidal neurons to amygdala stimulation and its modulation by dopamine projections to nucleus accumbens. J Neurophysiol 50[1]:148–161

    PubMed  Google Scholar 

  • Yim CY, Mogenson GJ (1989) Low doses of accumbens dopamine modulate amygdala suppression of spontaneous exploratory activity in rats. Brain Res 47:202–210

    Google Scholar 

  • Yoshimoto K, McBride WJ, Lumeng L, Li TK (1991) Alcohol stimulates the release of dopamine and serotonin in the nucleus accumbens. Alcohol 9:17–22

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rassnick, S., Pulvirenti, L. & Koob, G.F. Oral ethanol self-administration in rats is reduced by the administration of dopamine and glutamate receptor antagonists into the nucleus accumbens. Psychopharmacology 109, 92–98 (1992). https://doi.org/10.1007/BF02245485

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02245485

Key words

Navigation