, Volume 102, Issue 3, pp 357–363 | Cite as

Effects of GABAA receptor ligands on noradrenaline concentration and β-adrenoceptor binding in mouse cerebral cortex

  • D. Gettins
  • N. Goldsack
  • V. Ibegbuna
  • S. C. Stanford
Original Investigations


The present experiments investigated changes in β-adrenoceptor binding and noradrenaline stores in mouse cerebral cortex after single treatments with drugs which bind to the GABAA receptor but which attenuate the actions of GABA. Neither the GABA antagonist, securinine, nor the picrotoxin/Cl channel ligand, picrotoxin, affected noradrenaline levels or β-adrenoceptor binding. However, both the benzodiazepine inverse agonist, DMCM, and pentylenetetrazole increased noradrenaline levels 24 h after injection. Only pentylenetetrazol modified β-adrenoceptor binding: there was a significant increase in receptor number 4 days after injection, but a significant decrease after 7 days. The anxiogenic, proconvulsant drug, yohimbine, was without effect. The changes induced by DMCM and pentylenetetrazole do not seem to be related to the behavioural effects of these drugs or to their affinity for binding to benzodiazepine receptors. The possibility that these compounds have actions in addition to those at the GABAA receptor is discussed.

Key words

β-adrenoceptor GABAA receptor Noradrenaline Mouse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel MS, Clody DE, Wennogle LP, Myerson LR (1985) Effect of chronic desmethylimipramine or electroconvulsive shock on selected brain and platelet neurotransmitter recognition sites. Biochem Pharmacol 34:679–683CrossRefPubMedGoogle Scholar
  2. Beutler JA, Karbon EW, Brubaker AN, Malik R, Curtis DR, Enna SJ (1985) Securinine alkaloids: a new class of GABA receptor antagonist. Brain Res 330:135–140CrossRefPubMedGoogle Scholar
  3. Biswas B, Carlsson A (1977a) The effect of intracerebroventricularly administered GABA on brain monamine metabolism. Naunyn-Schmiedeberg's Arch Pharmacol 299:41–46CrossRefGoogle Scholar
  4. Biswas B, Carlsson A (1977b) The effect of intraperitoneally administered GABA on brain monoamine metabolism. Naunyn-Schmiedeberg's Arch Pharmacol 299:47–51CrossRefGoogle Scholar
  5. Bonanno G, Raiteri M (1987) Carriers for GABA and noradrenaline uptake exist on the same nerve terminal in rat hippocampus. Eur J Pharmacol 136:303–310CrossRefPubMedGoogle Scholar
  6. Bowery NG, Hill DR, Hudson AL, Doble A, Middlemass DN, Shaw J, Turnbull M (1980) (−)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature 283:92–94CrossRefPubMedGoogle Scholar
  7. Buckholtz NS, Boggan WO (1977) Monoamine oxidase inhibition in brain and liver produced by β-carbolines: structure activity relationships and substrate specificity. Biochem Pharmacol 26:1991–1996CrossRefPubMedGoogle Scholar
  8. Chapman AG, De Sarro GB, Premachandra M, Meldrum BS (1987) Bidirectional effects of β-carbolines in reflex epilepsy. Brain Res Bull 19:337–346CrossRefPubMedGoogle Scholar
  9. Charney DS, Heninger GR, Redmond DE (1983) Yohimbine induced anxiety and increased noradrenergic function in humans: effects of diazepam and clonidine. Life Sci 33:19–29CrossRefPubMedGoogle Scholar
  10. Chavoix C, Hantraye P, Brouillet E, Guibert B, Fukuda H, De la Sayette V, Fournier D, Naquet R, Maziere M (1988) Status epilepticus induced by pentylenetetrazole modulates in vivo [11C]Ro 15-1788 binding to benzodiazepine receptors. Effects of ligands acting at the supramolecular receptor complex. Eur J Pharmacol 146:207–214CrossRefPubMedGoogle Scholar
  11. Cowen PJ, Green AR, Nutt DJ, Martin IL (1981) Ethyl-β-carboline carboxylate lowers seizure threshold and antagonizes flurazepam-induced sedation in rats. Nature 290:54–55CrossRefPubMedGoogle Scholar
  12. Dalkara T, Saederup E, Squires RF, Krnjevic K (1986) Iontophoretic studies on rat hippocampus with some novel GABA antagonists. Life Sci 39:415–422CrossRefPubMedGoogle Scholar
  13. Dennis T, Curet O, Nishikawa T, Scatton B (1985) Further evidence for, and nature of, the facilitatory GABAergic influence on central noradrenergic transmission. Naunyn-Schmiedeberg's Arch Pharmacol 331:225–234CrossRefGoogle Scholar
  14. Dorow R, Horowski R, Paschelke G, Amin M, Braestrup C (1983) Severe anxiety induced by FG7142 a β-carboline ligand for benzodiazepine receptors. Lancet II:98–99CrossRefGoogle Scholar
  15. Dunn RW, Fielding S (1987) Yohimbine-induced seizures in mice: a model predictive of potential anxiolytic and GABA-mimetic agents. Drug Dev Res 10:177–188CrossRefGoogle Scholar
  16. File SE, Pellow S, Braestrup C (1985) Effects of the β-carboline, FG7142, in the social interaction test of anxiety and the holeboard:. correlations between behaviour and plasma concentrations. Pharmacol Biochem Behav 22:941–944CrossRefPubMedGoogle Scholar
  17. File SE, Curle PF, Baldwin HA, Neal MJ (1987) Anxiety in the rat is associated with decreased release of 5-HT and glycine from the hippocampus. Neurosci Lett 83:318–322CrossRefPubMedGoogle Scholar
  18. Fletcher A, Forster EA (1988) A proconvulsant action of selective α2-adrenoceptor antagonists. Eur J Pharmacol 151:27–34CrossRefPubMedGoogle Scholar
  19. Fung S-C, Fillenz M (1983) The role of pre-synaptic GABA and benzodiazepine receptors in the control of noradrenaline release in rat hippocampus. Neurosci Lett 42:61–66CrossRefPubMedGoogle Scholar
  20. Gettins D, Goldsack N, Ibegbuna V, Stanford SC (1988) A single injection of pentylenetetrazole or picrotoxin modifies noradrenaline stores and β-adrenoceptors in mouse cerebral cortex. Br J Pharmacol 95:887PGoogle Scholar
  21. Glover V, Liebowitz J, Armanda I, Sandler M (1982) β-carbolines as selective monoamine oxidase inhibitors: in vivo implications. J Neural Transm 54:209–218CrossRefPubMedGoogle Scholar
  22. Goldberg MR, Robertson D, (1983) Yohimbine: a pharmacological probe for study of the α2-adrenoceptor. Pharmacol Rev 35:143–180PubMedGoogle Scholar
  23. Grecksck G, de Carvalho LP, Venault P, Chapouthier G, Rossier J (1983) Convulsions induced by submaximal dose of pentylenetetrazole in mice are antagonised by the benzodiazepine antagonist Ro 15-1788. Life Sci 32:2579–2584CrossRefPubMedGoogle Scholar
  24. Johnston AL, File SE (1989) Yohimbine's anxiogenic action: evidence for noradrenergic and dopaminergic sites. Pharmacol Biochem Behav 32: 151–156CrossRefPubMedGoogle Scholar
  25. Lal H, Shearman G, Bennett D, Horvatt A (1983) Yohimbine, a β-carboline with behavioural and neurochemical properties common to anxiogenic drugs. Soc Neurosci Abstr 9:437Google Scholar
  26. Langer SZ, Arbilla A (1988) Limitations of the benzodiazepine nomenclature: a proposal for a pharmacological classification as omega receptor subtypes. Fundam Clin Pharmacol 2:159–170PubMedGoogle Scholar
  27. Lazarova M, Samanin R (1983) Potentiation by yohimbine of pentylenetetrazole-induced seizures in rats: role of α2-adrenergic receptors. Pharmacol Res Commun 15:419–425PubMedGoogle Scholar
  28. Levitan ES, Schofield PR, Burt DR, Rhee LM, Wisden W, Kohler M, Fujdai N, Rodriguez HF, Stephenson A, Darlison MG, Barnard EA, Seeburg PH (1988) Structural and functional basis for GABAA receptor heterogeneity. Nature 335:76–79CrossRefPubMedGoogle Scholar
  29. Lolait SJ, O'Carroll A-M, Kusano K, Mahan L.C. (1989) Pharmacological characterization amd region-specific expression in brain of the β2- and β3-subunits of the rat GABAA-receptor. FEBS Lett 258:17–21CrossRefPubMedGoogle Scholar
  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with the folin phenol reagent. J Biol Chem 193:265–273PubMedGoogle Scholar
  31. Munson PJ, Rodbard D (1980) Ligand: a versatile computerized approach for characterization of ligand binding systems. Anal Biochem 107:220–239CrossRefPubMedGoogle Scholar
  32. Olsen RW, Tobin AJ (1990) Molecular biology of GABAA receptors. FASEB J 4:1469–1480PubMedGoogle Scholar
  33. Pellow S, Chopin P, File SE (1985) Are the anxiogenic effects of yohimbine mediated by its action at benzodiazepine receptors? Neurosci Lett 55:5–9CrossRefPubMedGoogle Scholar
  34. Prichett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PC, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 238:582–585CrossRefGoogle Scholar
  35. Rehavi M, Skolnick P, Paul SM (1982) Effects of tetrazole derivatives on [3H]diazepam binding in vitro: correlation with convulsant potency. Eur J Pharmacol 78:352–356CrossRefGoogle Scholar
  36. Scatton B, Serrano A (1986) GABA mimetics increase extracellular DOPAC (as measured by in vivo voltammetry) in rat locus coeruleus. Naunyn-Schmiedeberg's Arch Pharmacol 332:380–383CrossRefGoogle Scholar
  37. Scatton B, Lloyd KG, Zivkovic B, Dennis T, Claustre Y, Dedek J, Arbilla S, Langer SZ, Bartholini G (1987) Fengabine, a novel antidepressant GABAergic agent. II. Effect on cerebral noradrenergic, serotonergic and GABAergic transmission in the rat. J Pharmacol Exp Ther 241:251–257PubMedGoogle Scholar
  38. Schofield PR (1989) The GABAA receptor: molecular biology reveals a complex picture. TIPS 10:476–478PubMedGoogle Scholar
  39. Siegel RE (1988) The mRNAs encoding GABAA/benzodiazepine receptor subunits are localized in different cell populations of the bovine cerebellum. Neuron 1:579–584CrossRefPubMedGoogle Scholar
  40. Simmonds MA (1982) Classification of some GABA antagonists with regard to site of action and potency in slices of rat cuneate nucleus. Eur J Pharmacol 80:347–358CrossRefPubMedGoogle Scholar
  41. Squires RF, Saederup E (1987) GABAA receptor blockers reverse the inhibitory effect of GABA on brain specific [35S]TBPS binding. Brain Res 414:357–364CrossRefPubMedGoogle Scholar
  42. Squires RF, Casida JE, Richardson M, Saederup E (1983)35S-t-butylbicyclophosphorothionate binds with high affinity to brain specific sites coupled to GABAA and ion recognition sites. Mol Pharmacol 23:326–336PubMedGoogle Scholar
  43. Squires RF, Saederup E, Crawley JN, Skolnick P, Paul SM (1984) Convulsant potencies of tetrazoles are highly correlated with actions on GABA/benzodiazepine/picrotoxin receptor complexes in brain. Life Sci 35:1439–1444CrossRefPubMedGoogle Scholar
  44. Stanford SC, Jefferys JGR (1985) Down regulation of α2-and β-adrenoceptor binding sites in rat cortex caused by amygdalar kindling. Exp Neurol 90:108–117CrossRefPubMedGoogle Scholar
  45. Stanford SC, Little HJ, Nutt DJ, Taylor SC (1986a) Effects of chronic treatment with benzodiazepine receptor ligands on cortical adrenoceptors. Eur J Pharmacol 129:181–184CrossRefPubMedGoogle Scholar
  46. Stanford SC, Little HJ, Nutt DJ, Taylor SC (1986b) A single dose of FG7142 causes long-term increases in mouse cortical β-adrenoceptors. Eur J Pharmacol 134:313–319CrossRefGoogle Scholar
  47. Stanford SC, Baldwin HA, File SE (1989) Effects of a single or repeated administration of the benzodiazepine inverse agonist FG7142 on behaviour and cortical adrenoceptor binding in the rat. Psychopharmacology 98:417–424CrossRefPubMedGoogle Scholar
  48. Stephens DN, Kehr W, Schneider HH, Schmiechen R (1984) β-Carbolines with agonistic and inverse agonistic properties at benzodiazepine receptors of the rat. Neurosci Lett 47:333–338CrossRefPubMedGoogle Scholar
  49. Study RE, Barker JL (1981) Diazepam and (−)pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of GABA responses in cultured central neurones. Proc Natl Acad Sci USA 78:7180–7184PubMedGoogle Scholar
  50. Treit D (1987) Ro 15-1788, CGS 8216, picrotoxin and pentylenetetrazole: do they antagonize anxiolytic drug effects through an anxiogenic action? Brain Res Bull 19:401–405CrossRefPubMedGoogle Scholar
  51. Ymer S, Draguhn A, Kohler M, Schofield PR, Seeburg PH (1989a) Sequence and expression of a novel GABAA receptor α-subunit. FEBS Lett 258:119–122CrossRefPubMedGoogle Scholar
  52. Ymer S, Schofield PR, Draguhn A, Werner P, Kohler M, Seeburg PH (1989b) GABAA receptor subunit heterogeneity: functional expression of cloned cDNAs. EMBO J 8:1665–1670PubMedGoogle Scholar
  53. Zhang H, Rosenberg HC, Tietz EI (1989) Injection of benzodiazepines but not GABA or muscimol into pars reticulata of substantia nigra suppresses pentylenetetrazole seizures. Brain Res 488:73–79CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • D. Gettins
    • 1
  • N. Goldsack
    • 1
  • V. Ibegbuna
    • 1
  • S. C. Stanford
    • 1
  1. 1.Department of PharmacologyUniversity College LondonLondonUK

Personalised recommendations