Computing

, Volume 33, Issue 3–4, pp 269–296 | Cite as

Galerkin collocation for an improved boundary element method for a plane mixed boundary value problem

  • U. Lamp
  • T. Schleicher
  • E. Stephan
  • W. L. Wendland
Contrinbuted Papers

Abstract

We present the numerical implementation of a boundary element approximation for the plane mixed boundary value problem of the Laplacian. The performed Galerkin procedure is based on the direct boundary integral method. Its accuracy is improved by using appropriate singularity functions as additional test and trial functions besides quadratic splines. We analize the consistency error of the used numerical integrations and present asymptotic error estimates for the fully discretized numerical scheme which are of the same optimal orders as the Galerkin errors.

AMS Subject Classifications

65R20 65N30 45L10 35J05 

Key words

Boundary element method singular elements error estimates including numerical quadrature 

Galerkin-Kollokation für eine verbesserte Randelement-Methode für ein ebenes gemischtes Randwertproblem

Zusammenfassung

Wir beschreiben die numerische Durchführung einer Randelement-Approximation für das ebene gemischte Randwertproblem für harmonische Funktionen. Grundlage unseres Galerkin-Verfahrens ist die direkte Randintegralmethode. Die Genauigkeit des Verfahrens wird dadurch verbessert, daß neben quadratischen Splines geeignete Singularitätenfunktionen als zusätzliche Test- und Ansatzfunktionen verwendet werden. Wir analysieren die Konsistenz der verwendeten numerischen Integrationen und erhalten asymptotische Fehlerabschätzungen der voll diskretisierten Näherungsgleichungen. Diese sind von den gleichen optimalen Ordnungen wie die entsprechenden Galerkin-Fehler.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnold, D. N., Wendland, W. L.: Collocation versus Galerkin procedures for boundary integral methods. In: Boundary Element Methods in Engineering (Brebbia, C. A., ed.), pp. 18–33. Berlin-Heidelberg-New York: Springer 1982.Google Scholar
  2. [2]
    Aubin, J. P.: Approximation of Elliptic Boundary-Value Problems. New York: Wiley-Interscience 1972.Google Scholar
  3. [3]
    Bolteus, L., Tullberg, O.: BEMSTAT — A new type of boundary element program for twodimensional elasticity problems. In: Boundary Element Methods (Brebbia, C. A., ed.), pp. 518–537. Berlin-Heidelberg-New York: Springer 1981.Google Scholar
  4. [4]
    Christiansen, S.: Condition number of matrices derived from two classes of integral equations. Math. Meth. Appl. Sci.3, 364–392 (1981).Google Scholar
  5. [5]
    Costabel, M., Stephan, E.: Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation. (TDH-preprint Nr. 593, Darmstadt.) Warsaw: Banach Center Publications.Google Scholar
  6. [6]
    Fichera, G.: Analisi essistenziale per le soluzioni di problemi al contorno mistri relativi alle equazioni ed ai sistemi di equazioni del secondo ordine di tipo ellittico autoaggiunti. Ann. Scuola Norm. Sup. Pisa, Ser. III1, 75–100 (1949).Google Scholar
  7. [7]
    Grisvard, P.: Boundary value problems in non-smooth domains. University of Maryland, Dept. Mathematics, College Park, MD. 20742, Lecture Notes # 19 (1980).Google Scholar
  8. [8]
    Hsiao, G. C.: On the stability of integral equations of the first kind with logarithmic kernels. Arch. Rat. Mech. Anal. (in print).Google Scholar
  9. [9]
    Hsiao, G. C., Kopp, P., Wendland, W. L.: A Galerkin collocation method for some integral equations of the first kind. Computing25, 89–130 (1980).Google Scholar
  10. [10]
    Ingham, D. B., Kelmanson, M. A.: Modified integral equation solution of steady viscous flow in a bifurcating channel. In: Boundary Element Methods in Engineering (Brebbia, C. A., ed.), pp. 213–229. Berlin-Heidelberg-New York: Springer 1982.Google Scholar
  11. [11]
    Lamp, U., Schleicher, T., Stephan, E., Wendland, W. L.: Theoretical and experimental asymptotic convergence of the boundary integral method for a plane mixed boundary value problem. In: Boundary Element Methods in Engineering (Brebbia, C. A., ed.), pp. 3–17. Berlin-Heidelberg-New York: Springer 1982.Google Scholar
  12. [12]
    Schleicher, T.: Die Randelementmethode für gemischte Randwertprobleme auf Eckengebieten unter Berücksichtigung von Singulärfunktionen. Diplomarbeit, TH Darmstadt, 1983.Google Scholar
  13. [13]
    Stephan, E., Wendland, W. L.: Boundary element method for membrane and torsion crack problems. Comp. Meth. Appl. Mech. Eng.36, 331–358 (1983).Google Scholar
  14. [14]
    Stephan, E., Wendland, W. L.: An augmented Galerkin procedure for the boundary integral method applied to mixed boundary value problems. IMACS, J. Num. Analysis (in print).Google Scholar
  15. [15]
    Stroud, A. H., Secrest, D.: Gaussian Quadrature Formulas. Englewood Cliffs, N.J.: Prentice-Hall 1966.Google Scholar
  16. [16]
    Wendland, W. L.: Asymptotic accuracy and convergence. In: Progress in Boundary Element Methods (Brebbia, C. A., ed.), pp. 289–313. London: Pentech Press 1981.Google Scholar
  17. [17]
    Wendland, W. L., Stephan, E., Hsiao, G. C.: On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Methods in the Applied Sciences1, 265–321 (1979).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • U. Lamp
    • 1
  • T. Schleicher
    • 1
  • E. Stephan
    • 2
  • W. L. Wendland
    • 1
  1. 1.Fachbereich MathematikDarmstadtFederal Republic of Germany
  2. 2.School of MathematicsGeorgia Inst. TechnologyAtlantaU.S.A.

Personalised recommendations