Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

M-Vollständigkeit von Warteschlangensystemen

M-completeness of queueing systems


Warteschlangensysteme, bei denen Ankünfte und Abgänge aus dem System einen Poisson-Prozeß bilden, heißen M-vollständig (siehe Müntz [5]). In dieser Arbeit werden hinreichende und notwendige Bedingungen für M-Vollständigkeit angegeben.


Queueing Systems for which Poisson arrivals imply Poisson departures are called M-complete (see Muntz [5]). In this paper necessary and sufficient conditions for M-completeness are derived.

This is a preview of subscription content, log in to check access.


  1. [1]

    Mani Chandy, K., Howard, J. H., jr., Towsley, D. F.: Product form and local balance in queueing network. J. ACM24, 250–263 (1977).

  2. [2]

    Jackson, J. R.: Job shop like queueing systems. Management Science10, 131–142 (1963).

  3. [3]

    Baskett, F., Chandy, K. M., Muntz, R. P., Palacios, F. G.: Open cosed and mixed networks of queues with different classes of customers. J. ACM22, 248–260 (1975).

  4. [4]

    Noetzel, A. S.: A generalized queueing discipline for product form network solutions. J. ACM26, 779–793 (1979).

  5. [5]

    Muntz, R. R.: Poisson departure processes and queueing networks. IBM Research Report RC-4145.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tzschach, H. M-Vollständigkeit von Warteschlangensystemen. Computing 33, 227–235 (1984).

Download citation