Computing

, Volume 43, Issue 4, pp 391–400 | Cite as

On adaptive sampling

  • P. Flajolet
Article

Abstract

We analyze the storage/accuracy trade-off of an adaptive sampling algorithm due to Wegman that makes it possible to evaluate probabilistically the number of distinct elements in a large file stored on disk.

AMS Subject Classifications

68C25 68E99 

Key words

Algorithms Data Base Estimation 

Adaptives Abtasten

Zusammenfassung

Wir untersuchen das Verhältnis Speichergröße zu Genauigkeit eines adaptiven Abtast-Algorithmus von Wegman, der es ermöglicht die Anzahl der verschiedenen Elemente einer großen Datei die auf Magnetplatte abgespeichert ist, abzuschätzen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. M. Astrahan, M. Schkolnick, and K-Y Whang. Approximating the number of unique values of an attribute without sorting.Information Sciences, 12, 11–15 1987.Google Scholar
  2. [2]
    G. Doetsch.Handbuch der Laplace Transformation, Vol. 1–3. Basel: Birkhäuser 1955.Google Scholar
  3. [3]
    R. Fagin, J. Nievergelt, N. Pippenger, and R. Strong. Extendible hashing: A fast access method for dynamic files.A.C.M. Trans. Database Syst., 4: 315–344, 1979.Google Scholar
  4. [4]
    P. Flajolet, and G. N. Martin. Probabilistic counting algorithms for data base applications.J. of Computer and System Sciences, 31: 182–209, 1985.Google Scholar
  5. [5]
    P. Flajolet, M. Régnier, and R. Sedgewick. Some uses of the Mellin integral transform in the analysis of algorithms. In A. Apostolico and Z. Galil, editors,Proceedings of NATO Advanced Study Institute on Combinatorial Algorithms on Words, pages 241–254. Berlin-Heidelberg-New York: Springer (NATO ASI Series, Vol. F12), 1985.Google Scholar
  6. [6]
    P. Flajolet, M. Régnier, and D. Sotteau. Algebraic methods for trie statistics.Annals of Discr. Math., 25: 145–188, 1985.Google Scholar
  7. [7]
    D. E. Knuth.The Art of Computer Programming, volume 3: Sorting and Searching. Addison-Wesley, 1973.Google Scholar
  8. [8]
    P. A. Larson. Dynamic hashing.BIT, 18: 184–201, 1978.Google Scholar
  9. [9]
    V. Y. Lum, P. S. T. Yuen, and M. Dodd. Key to address transformations: A fundamental study based on large existing format files.Comm. ACM, 14: 228–239, 1971.Google Scholar
  10. [10]
    M. Régnier. Evaluation des performances du hachage dynamique, 1983. Thèse de 3e cycle, Université Paris-Sud.Google Scholar
  11. [11]
    M. Wegman, Sample counting, 1984. Private Communication.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • P. Flajolet
    • 1
  1. 1.I. N. R. I. A. RocquencourtLe ChesnayFrance

Personalised recommendations