Computing

, Volume 39, Issue 4, pp 345–351 | Cite as

Using tabu search techniques for graph coloring

  • A. Hertz
  • D. de Werra
Contributed Papers

Abstract

Tabu search techniques are used for moving step by step towards the minimum value of a function. A tabu list of forbidden movements is updated during the iterations to avoid cycling and being trapped in local minima. Such techniques are adapted to graph coloring problems. We show that they provide almost optimal colorings of graphs having up to 1000 nodes and their efficiency is shown to be significantly superior to the famous simulated annealing.

Key words

Graph coloring tabu search simulated annealing 

Die Tabu-Methoden zur Graphenfärbung

Zusammenfassung

Tabu-Methoden werden benützt, um schrittweise den minimalen Wert einer Funktion zu erreichen. Eine sogenannte Tabuliste von verbotenen Schritten wird während des Prozesses nachgeführt, so daß man im Algorithmus keine Zyklen hat und nicht in lokalen Minima gefangen wird. Solche Methoden werden auf Graphenfärbung angepaßt. Wir zeigen, daß man mit dieser Technik fast optimale Färbungen für Graphen mit bis zu 1000 Knoten erhält. Die Effizienz dieser Methoden ist viel besser als diejenige der berühmten „Simulated Annealing” Algorithmen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bollobàs, B., Thomason, A.: Random graphs of small order. Random graphs '83. Annals of Discrete Mathematics28, 47–97 (1985).Google Scholar
  2. [2]
    Chams, M., Hertz, A., de Werra, D.: Some experiments with simulated annealing for coloring graphs. EJOR32, 260–266 (1987).Google Scholar
  3. [3]
    Glover, F.: Future paths for integer programming and links to artificial intelligence. CAAI Report 85-8, University of Colorado, Boulder CO (1985).Google Scholar
  4. [4]
    Glover, F., McMillan, C., Novick, B.: Interactive decision software and computer graphics for architectural and space planning. Annals of Operations Research5, 557–573 (1985).Google Scholar
  5. [5]
    Johri, A., Matula, D. W.: Probabilistic bounds and heuristic algorithm, for coloring large random graphs. Southern Methodist University, Dallas, Texas (1982).Google Scholar
  6. [6]
    Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.: Equation of state calculations by fast computing machines. J. Chem. Phys.21, 1087–1092 (1953).Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • A. Hertz
    • 1
  • D. de Werra
    • 1
  1. 1.DMA-EPFLLausanne-EcublensSwitzerland

Personalised recommendations