, Volume 11, Issue 1, pp 1–20 | Cite as

Finite stochastic automata with variable transition probabilities

  • J. J. Paredaens


The transition probabilities of the stochastic automata we introduce in this paper are dependent upon the number of times the current state has been passed by. All the possible ways an automaton can develop, are represented by a set of matrices, which is formally characterized.

Based on this representation, a method to calculate some probabilities of these automata, is given.


Computational Mathematic Variable Transition Stochastic Automaton Variable Transition Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Begrenzte stochastische Automaten mit veränderlichen Übergangswahrscheinlichkeiten


Die Übergangswahrscheinlichkeiten der stochastischen Automaten, die wir in diesen Beitrag einführen, hängen davon ab, wie oft man durch den derzeitigen Zustand läuft. Alle möglichen Weisen auf denen die Automaten sich entwickeln können, sind vorgestellt worden durch eine Ansammlung Matrizen, die auf formelle Weise charakterisiert worden sind.

Begründet auf dieser Vorstellung wird eine Methode gegeben, um einige Wahrscheinlichkeiten dieser Automaten auszurechnen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arbib, M. A.: Theories of Abstract Automata. Prentice-Hall. 1969.Google Scholar
  2. [2]
    Baer, J., D. Bovet, andG. Estrin: Legality and Other Properties of Graph Models of Computations. J.A.C.M.17, 543–554 (1970).Google Scholar
  3. [3]
    Karp, R.: A note on the application of graph theory to digital computer programming. Information and Control3, 179–190 (1960).CrossRefGoogle Scholar
  4. [4]
    Martin, D., andG. Estrin: Path length computations on graph models of computations. IEEE Trans. EC-181969, 530–536.Google Scholar
  5. [5]
    Martin, D., andG. Estrin: Models of Computations and Systems-Evaluation of Vertex Probabilities in Graph Models of Computations. J.A.C.M.14, 281–299 (1967).Google Scholar
  6. [6]
    Paz, A.: Introduction to probabilistic automata. New York-London: Academic Press 1971.Google Scholar
  7. [7]
    Tou, J.: Applied Automata Theory. Academic Press. 1968.Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • J. J. Paredaens
    • 1
  1. 1.Rekencentrum V.U.B./U.L.B.Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations