Advertisement

Computing

, Volume 45, Issue 4, pp 369–375 | Cite as

Job-shop scheduling with multi-purpose machines

  • P. Brucker
  • R. Schlie
Article

Abstract

Consider the following generalization of the classical job-shop scheduling problem in which a set of machines is associated with each operation of a job. The operation can be processed on any of the machines in this set. For each assignment μ of operations to machines letP(μ) be the corresponding job-shop problem andf(μ) be the minimum makespan ofP(μ). How to find an assignment which minimizesf(μ)? For problems with two jobs a polynomial algorithm is derived.

AMS Subject Classification

90 B 35 

Key words

Job-Shop scheduling flexible manufacturing shortest path 

Scheduling-Probleme in Jop-Shops mit Mehrzweckmaschinen

Zusammenfassung

Folgende Verallgemeinerung des klassischen Job-Shop Scheduling Problems wird untersucht. Jeder Operation eines Jobs sei eine Menge von Maschinen zugeordnet. Wählt man für jede Operation genau eine Maschine aus dieser Menge aus, so erhält man ein klassisches Job-Shop Problem, dessen minimale Gesamtbearbeitungszeitf(μ) von dieser Zuordnung μ abhängt. Gesucht ist eine Zuordnung μ, dief(μ) minimiert. Für zwei Jobs wird ein polynomialer Algorithmus entwickelt, der dieses Problem löst.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Akers, S. B., A graphical approach to production scheduling problems. Operations Research4, 244–245 (1956).Google Scholar
  2. [2]
    Brucker, P., An efficient algorithm for the job-shop problem with two jobs, Computing40, 353–359 (1988).Google Scholar
  3. [3]
    Hardgrave, W. H., Nemhauser, G. L., A geometric model and a graphical algorithm for a sequencing problem. Operations Research11, 889–900 (1963).Google Scholar
  4. [4]
    Sotskov, Y. N., The complexity of shop-scheduling problems with two or three jobs. European Journal of Operations Research (in press).Google Scholar
  5. [5]
    Szwarc, W., Solution of the Akers-Friedman scheduling problem. Operations Research8, 782–788 (1960).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • P. Brucker
    • 1
  • R. Schlie
    • 1
  1. 1.Fachbereich Mathematik/InformatikUniversität OsnabrückOsnabrückFederal Republic of Germany

Personalised recommendations