Advertisement

Computing

, Volume 56, Issue 3, pp 179–196 | Cite as

Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems

  • P. Vaněk
  • J. Mandel
  • M. Brezina
Article

Abstract

An algebraic multigrid algorithm for symmetric, positive definite linear systems is developed based on the concept of prolongation by smoothed aggregation. Coarse levels are generated automatically. We present a set of requirements motivated heuristically by a convergence theory. The algorithm then attempts to satisfy the requirements. Input to the method are the coefficient matrix and zero energy modes, which are determined from nodal coordinates and knowledge of the differential equation. Efficiency of the resulting algorithm is demonstrated by computational results on real world problems from solid elasticity, plate bending, and shells.

AMS Subject Classifications

65N55 65F10 

Key words

Algebraic multigrid unstructured meshes automatic coarsening biharmonic equation elasticity plates and shells 

Algebraisches Mehrgitterverfahren mittels geglätteter Aggregation für elliptische Aufgaben zweiter und vierter Ordnung

Zusammenfassung

Es wird ein algebraisches Mehrgitterverfahren für symmetrische, positiv definite Systeme vorgestellt, das auf dem Konzept der geglätteten Aggregation beruht. Die Grobgittergleichungen werden automatisch erzeugt. Wir stellen eine Reihe von Bedingungen auf, die aufgrund der Konvergenztheorie heuristisch motiviert sind. Der Algorithmus versucht diese Bedingungen zu erfüllen. Eingabe der Methode sind die Matrix-Koeffizienten und die Starrkörperbewegungen, die aus den Knotenwerten unter Kenntnis der Differentialgleichung bestimmt werden. Die Effizienz des entstehenden Algorithmus wird anhand numerischer Resultate für praktische Aufgaben aus den Bereichen Elastizität, Platten und Schalen demonstriert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alcouffe, R. E., Brandt, A., Dendy, J. E., Painter J. W.: The multi-grid methods for the diffusion equation with strongly discontinuous coefficients. SIAM J. Sci. Stat. Comput.2, 430–454 (1981).CrossRefGoogle Scholar
  2. [2]
    Bramble, J., Zhang, X.: Multigrid methods for the biharmonic problem discretized by conformingC 1 finite elements on nonnested meshes (submitted).Google Scholar
  3. [3]
    Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrip algorithms without regularity assumptions. Math. Comp.57, 23–45 (1991).Google Scholar
  4. [4]
    Brandt, A.: Algebraic multigrid theory: The symmetric case. Appl. Math. Comput.19, 23–56 (1986).CrossRefGoogle Scholar
  5. [5]
    Brandt, A., McCormick, S. F., Ruge, J. W.: Algebraic multigrid (AMG) for sparse matrix equations. In: Sparsity and its applications (Evans, D. J., ed.), pp. 257–284 Cambridge: Cambridge University Press 1985.Google Scholar
  6. [6]
    Brenner, S. C.: An optimal order nonconforming multigrid method for the biharmonic equation. SIAM J. Numer. Anal.26, 1124–1138 (1989).CrossRefGoogle Scholar
  7. [7]
    Chan, T. F., Go, S., Zou, J.: Multilevel domain decomposition and multigrid methods for unstructured meshes: algorithms and theory. Tech. Report Cam 95-24, Dept. Math., UCLA, May 1995.Google Scholar
  8. [8]
    Dendy, J. E., Ida, M. P., Rutledge, J. M.: A semicoarsening multigrid algorithm for SIMD machines., SIAM J. Sci. Stat. Comput.13, 1460–1469 (1992).CrossRefGoogle Scholar
  9. [9]
    Hackbusch, W.: Multigrid methods and applications. Computational mathematics, Vol. 4. Berlin Heidelberg New York: Springer 1985.Google Scholar
  10. [10]
    Mandel, J.: Balancing domain decomposition. Comm. Numer. Meth. Eng.9, 233–241 (1993).CrossRefGoogle Scholar
  11. [11]
    Oswald, P.: Hierarchical conforming finite element methods for the biharmonic equation. SIAM J. Numer Anal.29, 1620–1625 (1992).CrossRefGoogle Scholar
  12. [12]
    Peisker, P., Braess, D.: A conjugate gradient method and a multigrid method for Morley's finite element approximation of the biharmonic equation. Numer. Math.50, 567–586 (1987).CrossRefGoogle Scholar
  13. [13]
    Ruge, J. W.: Algebraic multigrid (AMG) for geodetic survey problems, in Prelimary Proc. Internat. Multigrid Conference, Fort Collins, CO, 1983, Institute for Computational Studies at Colorado State University.Google Scholar
  14. [14]
    Ruge, J. W., Stüben, K.: Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG), In: Multigrid methods for integral and differential equations (Paddon, D. J., Holstein, H., eds.), pp. 169–212. The Institute of Mathematics and its Applications Conference Series, Oxford: Clarendon Press 1985.Google Scholar
  15. [15]
    Ruge, J. W., Stüben, K.: Algebraic multigrid (AMG) In: Multigrid methods (McCormick, S. F., ed.), pp. 73–130, Philadelphia: SIAM 1987.Google Scholar
  16. [16]
    Smith, R. A., Weiser, A.: Semicoarsening multigrid on a hypercube. SIAM J. Sci. Stat. Comput.13, 1314–1329 (1992).CrossRefGoogle Scholar
  17. [17]
    Stüben, K.: Algebraic multigrid (AMG): experiences and comparisons, Appl. Math. Comput.13, 419–452 (1983).CrossRefGoogle Scholar
  18. [18]
    Vaněk, P.: Fast multigrid solver. Appl. Math.40, 1–20 (1995).Google Scholar
  19. [19]
    Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operator. Appl. Math.37, 265–274 (1992).Google Scholar
  20. [20]
    Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid on unstructured meshes (Submitted).Google Scholar
  21. [21]
    Zhang, X.: Multilevel Schwarz methods for the biharmonic Dirichlet problem. SIAM J. Sci. Comput.15, 621–644 (1994).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • P. Vaněk
    • 1
  • J. Mandel
    • 2
  • M. Brezina
    • 1
  1. 1.Center for Computational MathematicsUniversity of Colorado at DenverDenverUSA
  2. 2.University of West BohemiaPlzeňCzech Republic

Personalised recommendations