, Volume 27, Issue 3, pp 227–236

Some models of error in floating point multiplication

  • R. Goodman


New results are given on error in floating point multiplication. Certain choices of the base minimize the mean multiplicative error. These choices depend on which measure of error is selected. Some measures are included which were not in earlier studies. Some of the results have application to computer design.

Einige Fehlermodelle bei Gleitkomma-Multiplikation


Es werden einige neue Resultate bezüglich des Fehlers bei der Gleitkomma-Multiplikation mitgeteilt. In Abhängigkeit vom Maß für den Fehler wird festgestellt, für welche Basen der mittlere Multiplikationsfehler minimal wird; dabei sind gegenüber früheren Untersuchungen neue Fehlermaße einbezogen worden. Ein Teil der Ergebnisse hat Nutzanwendungen auf den Computerentwurf.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BFGL [79]: Bustoz, J., Feldstein, A., Goodman, R., Linnainmaa, S., Improved trailing digits estimates applied to optimal computer arithmetic. J. ACM26, 716–730 (1979).Google Scholar
  2. Cody [73]: Cody, W. J., jr., Static and dynamic numerical characteristics of floating point arithmetic. IEEE Transactions on Electronic ComputersC-22, 598–601 (1973).Google Scholar
  3. Feldstein and Goodman [76]: Feldstein, A., Goodman, R., Convergence estimates for the distribution of trailing digits. J. ACM23, 287–297 (1976).Google Scholar
  4. Fosdick [78]: Fosdick, L., private communication.Google Scholar
  5. Goodman and Feldstein [75]: Goodman, R., Feldstein, A., Round-off error in products. Computing15, 263–273 (1975).Google Scholar
  6. Goodman and Feldstein [77]: Goodman, R., Feldstein, A., Effect of guard digits and normalization options on floating point multiplication. Computing18, 93–106 (1977).Google Scholar
  7. KCS [81]: Kahan, W., Coonen, J., Stone, H., et al.: A Proposed Standard for Binary Floating-Point Arithmetic, Draft 8.0 of IEEE Task P754. Computer14, 51–62 (1981).Google Scholar
  8. Knuth [69]: Knuth, D., The art of computer programming, Vol. 2: Semi-Numerical Algorithms. Reading, Mass.: Addison-Wesley 1969.Google Scholar
  9. McKeeman [67]: McKeeman, W., Representation error for real numbers in binary computer arithmetic. IEEE Transactions on Electronic Computers (Short Notes)EC-16, 682–683 (1967).Google Scholar
  10. Urabe [68]: Urabe, M., Roundoff error distribution in fixed-point multiplication and a remark about the rounding rule. SINUM5, 202–210 (1968).Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • R. Goodman
    • 1
  1. 1.Department of MathematicsUniversity of MiamiCoral GablesU.S.A.

Personalised recommendations