Advertisement

Journal of Oceanography

, Volume 52, Issue 1, pp 1–15 | Cite as

Biological community and sediment fatty acids associated with the deep-sea whale skeleton at the Torishima Seamount

  • Takeshi Naganuma
  • Hideki Wada
  • Kantaro Fujioka
Article

Abstract

A whale skeleton was discovered on the flat-topped summit of the Torishima Seamount, 4037 m deep, northwest Pacific Ocean, during a dive by the submersibleShinkai 6500 in 1992. The skeleton was encrusted with mytilid mussels and harbored benthic animals such as galatheid crabs, echinoderms, sea anemones, and unidentifiable tube worms. The whale skeleton was revisited in 1993. Sediment samples were collected to outline the chemical-microbial distribution in the sediment associated with the skeleton. In the sediment, there was a gradient of sulfide concentration with the peak of 20 n moles per gram sediment just beneath a bone. Corresponding gradients were observed in thiosulfate-oxidizing enzyme activity, bacterial colony counts and fatty acid amounts. Direct analysis of the sediment fatty acid composition suggested the occurrence of methane-oxidizing bacteria and sulfur-reducing bacteria in close association with the whale skeleton. These observations imply that the methane and sulfides were formed during the saprogenic process and utilized for the chemosynthetic bacterial production to feed the whale skeleton-animal community.

Keywords

Sulfide Fatty Acid Composition Pacific Ocean Bacterial Production Colony Count 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, P. A. (1988a): The role of anoxia in the decay and mineralization of proteinaceous macro-fossils.Paleobiology,14, 139–154.Google Scholar
  2. Allison, P. A. (1988b): Konservat-Lagerstätten: cause and classification.Paleobiology,14, 331–344.Google Scholar
  3. Allison, P. A., C. R. Smith, H. Kukert, J. W. Deming and B. A. Bennett (1991): Deep-water taphonomy of vertebrate carcasses: a whale skeleton in the bathyal Santa Catalina Basin.Paleobiology,17, 78–89.Google Scholar
  4. Baird, B. H. and D. C. White (1985): Biomass and community structure of the abyssal microbiota determined from the ester-linked phospholipids recovered from Venezuela Basin and Puerto Rico Trench sediments.Mar. Geol.,68, 217–231.Google Scholar
  5. Barnes, R. D. (1980):Invertebrate Zoology (4th ed.), Saunders College, Philadelphia, 1089 pp.Google Scholar
  6. Bobbie, R. J. and D. C. White (1980): Characterization of benthic microbial community structure by high-resolution gas chromatography of fatty acids methyl esters.Appl. Environ. Microbiol.,39, 1212–1222.Google Scholar
  7. Brusca, R. C. and G. J. Brusca (1990)Invertebrates, Sinauer Associates, Inc., Sunderland, Massachusetts, 922 pp.Google Scholar
  8. Cohat, Y. (1986):Vie et Mort des Baleines, Edition Gallimard (Japanese translation, ed. by N. Miyazaki, 1991, Sogensha, Osaka, Japan, 222 pp).Google Scholar
  9. Dando, P. R., A. J. Southward, E. C. Southward, D. R. Dixon, A. Crawford and M. Crawford (1992): Shipwrecked tube worms.Nature,356, 667.Google Scholar
  10. Desbruyères, D., A.-M. Alayse-Danet, S. Ohta and the Scientific Parties of BIOLAU and STARMER Cruises (1994): Deep-sea hydrothermal communities in Southwestern Pacific back-arc basins (the North Fiji Basin and Lau Basin): Composition, microdistribution and food web.Mar. Geol.,116, 227–242.Google Scholar
  11. Fryer, P., J. A. Pearce, L. B. Stokkinget al. (1990).Proceedings of the Ocean Drilling Program, Initial Reports,125, 1092 pp.Google Scholar
  12. Fujioka, K., H. Matsuoka and K. Matsuo (1991): Sediment accumulation rate and marine tephra of the Philippine Sea: An introduction of volcanic history of intra-oceanic arc.J. Geol.,100, 604–615 (in Japanese with English abstract).Google Scholar
  13. Fujioka, K., H. Wada and H. Okano (1993): Torishima whale bone deep-sea animal community assemblage—new finding byShinkai 6500.J. Geol.,102, 507–517 (in Japanese with English abstract).Google Scholar
  14. Hachiya, K. (1993): Mammalia. p. 263–274. InMorosaki-so-gun no Kaseki (Fossils from the Morosaki Group), Tokai Kaseki Kenkyukai (Tokai Fossil Association) (in Japanese with English abstract).Google Scholar
  15. Hashimoto, J. and T. Okutani (1994): Four new mytilid mussels associated with deep-sea chemosynthetic communities around Japan.Venus (Japan. J. Malacol.),53, 61–83.Google Scholar
  16. Hashimoto, J., T. Miura, K. Fujikura and J. Ossaka (1993): Discovery of vestimentiferan tube-worms in the euphotic zone.Zool. Sci.,10, 1063–1067.Google Scholar
  17. Hessler, R. R. and P. F. Lonsdale (1991): Biogeography of Mariana Trough hydrothermal vent communities.Deep-Sea Res.,38, 185–199.Google Scholar
  18. Jollivet, D., J. Hashimoto, J.-M. Auzende, E. Honza, E. Ruellan, S. Dutt, Y. Iwabuchi, P. Jarvis, M. Joshima, T. Kawai, T. Kawamoto, K. Kishimoto, Y. Lafoy, T. Matsumoto, K. Mitsuzawa, T. Naganuma, J. Naka, K. Otsuka, A. Otsuki, B. Rao, M. Tanahashi, T. Tanaka, J. S. Temakon, T. Urabe, T. Veivau and T. Yokokura (1989): Premières observations de communautés animales associées à l'hydrothermalisme arrière-arc du bassin nordfidjen.C. R. Acad. Sci. Paris, III,309, 301–308.Google Scholar
  19. Kerger, B. D., P. D. Nichols, C. P. Antworth, W. Sand, E. Bock, J. C. Cox, T. A. Langworthy and D. C. White (1986): Signature fatty acids in the polar lipids of acid producingThiobacillus sp.: Methoxy, cyclopropyl, alpha-hydroxy-cyclopropyl and branched and normal moenoic fatty acids.FEMS Microbiol. Ecol.,32, 67–77.Google Scholar
  20. Lutz, R. A. and M. J. Kennish (1993): Ecology of deep-sea hydrothermal vent communities: A review.Rev. Geophys.,31, 211–242.Google Scholar
  21. MacDonald, I. R., J. F. Reilly, II, N. L. Guinasso, Jr., J. M. Brooks, R. S. Carney, W. A. Bryant and T. J. Bright (1990): Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico.Science,248, 1096–1099.Google Scholar
  22. Mancuso, C. A., P. D. Franzmann, H. R. Burton and P. D. Nichols (1990): Microbial community structure and biomass estimates of a methanogenic Antarctic lake ecosystem as determined by phospholipid analyses.Microb. Ecol.,19, 73–95.Google Scholar
  23. Masuzawa, T., N. Handa, H. Kitagawa and M. Kusakabe (1992): Sulfate reduction using methane in sediments beneath a bathyal “cold seep” giant clam community off Hatsushima Island, Sagami Bay, Japan.Earth Planet. Sci. Lett.,110, 39–50.Google Scholar
  24. Mayer, L. A., A. N. Shor, J. H. Clarke and D. J. W. Piper (1988): Dense biological communities at 3850 m on the Laurentian Fan and their relationship to the deposits of the 1929 Grand Banks earthquake.Deep-Sea Res.,35, 1235–1246.Google Scholar
  25. Morita, R. Y. (1972): Pressure. Bacteria, fungi, and blue-green algae. p. 1361–1388. InMarine Ecology, Volume I, Environmental Factors, Part 3 ed. by O. Kinne, Wiley-International, London.Google Scholar
  26. Naganuma, T. and H. Seki (1994): Microbial populations of hydrothermal fluid and plumes in the North Fiji Basin with reference to chemosynthesis.Mar. Geol.,116, 243–253.Google Scholar
  27. Nagamuma, T., A. Otsuki and H. Seki (1989): Abundance and growth rate of bacterioplankton community in hydrothermal vent plumes of the North Fiji Basin.Deep-Sea Res.,36, 1379–1390.Google Scholar
  28. Naganuma, T., E. Ikemoto, S. Sukizaki, Y. Tsuji and H. Hotta (1990): Sulfur bacteria originating from the water and organisms in a hydrothermally active area of the Mid-Okinawa Trough.J. Oceanogr. Soc. Japan,46, 111–117.Google Scholar
  29. Naganuma, T., H. Seki and H. Hotta (1991): Abundance and growth characteristics of the bacterioplankton inside and outside the hydrothermal vent plumes in the North Fiji Basin.La mer,29, 18–22.Google Scholar
  30. Nicholas, P. D., J. M. Henson, J. B. Guckert, D. E. Nivens and D. C. White (1985): Phospholipid and lipopolysaccharide normal and hydroxy fatty acids as potential signatures for methane-oxidising bacteria.FEMS Microbiol. Ecol.,31, 327–335.Google Scholar
  31. Parkes, R. J. (1987): Analysis of microbial communities with sediments using biomarkers. p. 147–177. InEcology of Microbial Communities, ed. by M. Fletcher, T. R. G. Gray and J. G. Jones, Cambridge University Press, Cambridge.Google Scholar
  32. Parkes, R. J. and A. G. Calder (1985): The cellular fatty acids of three strains ofDesulfobulbus, a propionate utilizing sulphate-reducing bacterium.FEMS Microbiol. Ecol.,31, 361–363.Google Scholar
  33. Poremba, K. (1994): Simulated degradation of phytodetritus in deep-sea sediments of the NE Atlantic (47°N, 19°W).Mar. Ecol. Prog. Ser.,105, 291–299.Google Scholar
  34. Rajendran, N., O. Matsuda, N. Imamura and Y. Urushigawa (1992): Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipid ester-linked fatty acids.Appl. Environ. Microbiol.,58, 562–571.Google Scholar
  35. Rajendran, N., O. Matsuda, Y. Urushigawa and U. Shimidu (1994): Characterization of microbial community structure in the surface sediment of Osaka Bay, Japan, by phospholipid patty acid analysis.Appl. Environ. Microbiol.,60, 248–257.Google Scholar
  36. Rhoads, D. C., R. A. Lutz, E. C. Revelas and R. M. Cerrato (1981): Growth of bivalves at deep-sea hydrothermal vents along the Galapagos Rift.Science,214, 911–913.Google Scholar
  37. Saliot, A., M. Goutx, A. Fevrier, D. Tusseau and C. Andrie (1982): Organic sedimentation in the water column in the Arabian Sea: Relationship between the lipid composition of small and large-size, surface and deep particles.Mar. Chem.,11, 257–278.Google Scholar
  38. Sasser, M. (1990a): Identification of bacteria by gas chromatography of cellular fatty acids.MIDI Technical Note (MIDI, Newark, Delaware),101, 1–7.Google Scholar
  39. Sasser, M. (1990b): “Tracking” a strain using the microbial identification system.MIDI Technical Note (MIDI, Newark, Delaware),102, 1–4.Google Scholar
  40. Seki, H. and T. Naganuma (1989): Growth characteristics ofThiobacterium sp. from the plume of hydrothermal vents of the North Fiji Basin.Mar. Ecol. Prog. Ser.,54, 199–202.Google Scholar
  41. Smith, C. R. (1992): Whale falls. Oceanus, 35(3), 74–78.Google Scholar
  42. Smith, C. R., H. Kukert, R. A. Wheatcroft, P. A. Jumars and J. W. Deming (1989): Vent fauna on whale remains.Nature,341, 27–28.Google Scholar
  43. Sörbo, B. H. (1953): Crystalline rhodanese I. Purification and physicochemical examination.Acta Chem. Scand.,7, 1129–1136.Google Scholar
  44. Squires, R. L., J. L. Goedert and L. G. Barnes (1991): Whale carcasses.Nature,349, 574.Google Scholar
  45. Strickland, J. D. H. and T. R. Parsons (1972): A practical handbook of seawater analysis.Bull. Fish. Res. Board Canada,167, 1–311.Google Scholar
  46. Taylor, J. and R. J. Parkes (1983): The cellular fatty acids of the sulphate-reducing bacteria,Desulfobacter sp.,Desulfobulbus sp. andDesulfovibrio desulfuricans.J. Gen. Microbiol.,129, 3303–3309.Google Scholar
  47. Taylor, J. and R. J. Parkes (1985): Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers.J. Gen. Microbiol.,131, 631–642.Google Scholar
  48. Tunnicliffe, V. (1991): The biology of hydrothermal vents: ecology and evolution.Mar. Biol. Ann. Rev.,29, 319–407.Google Scholar
  49. Tunnicliffe, V. (1992): The nature and origin of the modern hydrothermal vent fauna.Palaios,7, 338–350.Google Scholar
  50. Tunnicliffe, V. and S. K. Juniper (1990): Cosmopolitan underwater fauna.Nature,344, 300.Google Scholar
  51. Turekian, K. K. and J. K. Cochran (1981): Growth rates of a vesicomyid clam from the Galapagos Spreading Center.Science,214, 909–911.Google Scholar
  52. Turekian, K. K., J. K. Cochran and J. T. Bennett (1983): Growth rate of a vesicomyid clam from the 21°N East Pacific Rise hydrothermal area.Nature,303, 55–56.Google Scholar
  53. Turner, R. D. (1985): Notes on mollusks of deep-sea vents and reducing sediments.Am. Malacol. Bull., Sp. Ed.,1, 23–34.Google Scholar
  54. Wada, H. (1993): Torishima whale-bone animal community (TOWBAC).Shizuoka Chigaku (Shizuoka Geology),67, 1–3 (in Japanese with color plates).Google Scholar
  55. Weng L., R. L. Heinrikson and J. Westley (1978): Active site cysteinyl and arginyl residues of rhodanese.J. Biol. Chem.,253, 8109–8119.Google Scholar
  56. Westley, J. (1973) Rhodanese.Adv. Enzymol.,39, 327–368.Google Scholar
  57. Williams, A. B. and K. Baba (1989): New squat lobsters (Galatheidae) from the Pacific Ocean: Mariana Back Arc Basin, East Pacific Rise, and Cascade Basin.Fish. Bull. U.S.,87, 899–910.Google Scholar
  58. Yang, P., L. Vauterin, M. Vancanneyt, J. Swings and K. Kersters (1993): Application of fatty acid methyl ester for the taxonomic analysis of the genusXanthomonas.Syst. Appl. Microbiol.,16, 47–71.Google Scholar

Copyright information

© Oceanographic Society of Japan 1996

Authors and Affiliations

  • Takeshi Naganuma
    • 1
  • Hideki Wada
    • 2
  • Kantaro Fujioka
    • 1
  1. 1.Japan Marine Science and Technology CenterYokosukaJapan
  2. 2.Institute of GeosciencesShizuoka UniversityShizuokaJapan

Personalised recommendations