Advertisement

Plant and Soil

, Volume 118, Issue 1–2, pp 221–229 | Cite as

Detection of pectolytic activity andpel homologous sequences inFrankia

  • A. Séguin
  • M. Lalonde
Article

Abstract

Using a cup-plate pectin agar assay, pectolytic activity was detected in nodule filtrates obtained fromAlnus rugosa (DuRoi) Spreng,A. glutinosa (L.) Gaertn andA. crispa (Ait.) Pursh seedlings after infection with twoFrankia strains (ACN1 AG , CpI1). Pectolytic activity was also detected in cultures filtrates of the same twoFrankia isolates afterin vitro-cultivation on Qmod pectin liquid medium. When Southern blots of Frankia total DNAs from 3 isolates ofF. alni subsp.Pommerii (ACN1 AG , ArI3, and CPX32b) and 3 isolates ofF. elaeagni (EUN1 pec, SCN 10a and TX31e HR ) were hybridized withPelBDA probes fromErwinia chrysanthemi, positive signals were found in all 7 Frankiae tested.

Key words

actinorhizal plants DNA-DNA hybridization Frankia pectate lyase pectolytic activity root symbiosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angle J S 1986 Pectic and proteolytic enzymes produced by fast- and slow-growing soybean rhizobia. Soil Biol. Biochem. 18, 115–116.Google Scholar
  2. Angulo Carmona A F 1974 La formation des nodules fixateurs d'azote chezAlnus glutinosa (1.) ViII. Acta Bot. Neerl. 23, 257–303.Google Scholar
  3. Bateman D F and Basham H G 1976 Degradation of plant cell walls and membranes by microbial enzymes. Encycl. Plant Physiol. New Ser. 4, 316–355.Google Scholar
  4. Berry A M, Kahn R K S and Booth M C 1989 Identification of indole compounds secreted byFrankia HFPArJ3 in defined culture medium. Plant and Soil 118, 205–209.Google Scholar
  5. Berry A M and Torrey J G 1979 Isolation and characterizationin vivo andin vitro of an actinomycetous endophyte fromAlnus rubra (Bong).In Symbiotic Nitrogen Fixation For Use in Temperate Forestry. Eds. J G Gordon, C T Wheeler and D A Perry. pp 69–83. Oregon State University, Corvallis.Google Scholar
  6. Berry A M and Torrey J G 1983 Root hair deformation in the infection process ofAlnus rubra. Can. J. Bot. 61, 2863–2876.Google Scholar
  7. Bertrand L J and Lalonde M 1985In vitro propagation and nodulation byFrankia of actinorhizal Russian Olive (Elaeagnus angustifolia L.). Plant and Soil 87, 143–152.Google Scholar
  8. Blom J 1982 Carbon and nitrogen source requirements ofFrankia strains. FEMS Microbiol. Lett. 13, 51–55.Google Scholar
  9. Boyer H W and Roulland-Dussoix D 1969 A complementation analysis of the restriction and modification of DNA inEscherichia coli. J. Mol. Biol. 41, 459–472.PubMedGoogle Scholar
  10. Callaham D, Newcomb W, Torrey J G and Peterson R L 1979 Root hair infection in actinomycete induced root nodule initiation inCasuarina, Myrica andComptonia. Bot. Gaz. 140 (S), 1–9.Google Scholar
  11. Callaham D, Torrey J G and Del Tredici P 1978 Isolation andin vitro cultivation of an actinomycete causing root nodulation inComptonia peregrina. Science 199, 899–902.Google Scholar
  12. Chatterjee A K, Buchanan G E, Behrens M K and Starr M P 1978 Synthesis and excretion of polygalacturonic acid transeliminase inErwinia, Yersinia andKlebsiella species. Can. J. Microbiol. 25, 94–102.Google Scholar
  13. Christensen P and Cook F D 1978Lysobacter new-genus of nonfruiting gliding bacteria with a high base ratio. Int. J. Syst. Bacteriol. 28, 367–393.Google Scholar
  14. Collmer A and Keen N T 1986 The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24, 383–409.Google Scholar
  15. Collmer A, Berman P and Mount M S 1982 Pectate lyase regulation and bacterial soft-rot pathogenesis.In Phytopathogenic Prokaryotes. Eds. M S Mount and G H Lacy. pp 395–422. Academic Press, New York.Google Scholar
  16. Collmer A, Schoedel C, Roeder D L, Ried J L and Rissler J F 1985 Molecular cloning inEscherichia coli ofErwinia chrysanthemi genes encoding multiple forms of pectates lyase. J. Bacteriol. 161, 913–920.PubMedGoogle Scholar
  17. Dahm H, Strzelczyk E and Majewska L 1987 Cellulolytic and pectolytic activity of mycorrhizal fungi, bacteria and actinomycetes associated with the roots ofPinus sylvestris. Pedobiologia 30, 73–80.Google Scholar
  18. De Lorenzo G, Salvi G, Degra L, D'Ovidio R and Cervone F 1987 Phytopathogenic fungus fusarium-monoliforme. J. Gen. Microbiol. 133, 3365–3374.Google Scholar
  19. Denhart D T 1966 A membrane filter technique for the detection of complementary DNA. Biochem. Biophys. Res. Commun. 23, 641–6436.PubMedGoogle Scholar
  20. Dingle J W, Reid W W and Solomons G L 1953 The enzyme degradation of pectin and other polysaccharides. II. Application of the ‘cup-plate’ assay to the estimation of enzymes. J. Sci. Food Agric. 3–4, 149–155.Google Scholar
  21. Gross D C and Cody Y S 1985 Mechanisms of plant pathogenesis byPseudomonas species. Can. J. Microbiol. 31, 403–410.Google Scholar
  22. Hubbell D H, Morales V M and Umali-Garcia M 1978 Pectolytic enzymes inRhizobium. Appl. Environ. Microbiol. 35, 210–213.PubMedGoogle Scholar
  23. Kaiser P 1971 L'activité pectinolytique des actinomycetes. Ann. Inst. Pasteur 121, 389–404.Google Scholar
  24. Keen N T and Tamaki S 1986 Structure of two pectate lyase genes fromErwinia chrystanthemi EC 16 and their high-level expression inEscherichia coli. J. Bacteriol. 168, 595–606.PubMedGoogle Scholar
  25. Keen N T, Dahlbeck D, Staskawicz B and Belser W 1984. Molecular cloning of pectate lyase genes fromErwinia chrystanthemi and their expression inEscherichia coli. J. Bacteriol. 159, 825–831.PubMedGoogle Scholar
  26. Kotoujansky A, Diolez A, Boccara M, Bertheau Y, Andro T and Coleno A 1985 Molecular cloning ofErwinia chrysanthemi pectinase and cellulase structural genes. EMBO J. 4, 781–785.Google Scholar
  27. Lalonde M 1977 Infection process of theAlnus root nodule symbiosis.In Developments in Nitrogen Fixation. Eds. W Newton, J R Postgate and C Rodriguez-Barrueco, pp 569–589. Academic Press, London.Google Scholar
  28. Lalonde M 1979 A simple and rapid method for the isolation, cultivationin vitro and characterization ofFrankia strains fromAlnus root nodules.In Symbiotic Nitrogen Fixation for Use in Temperate Forestry. Eds. J C Gordon, C T Wheeler and D A Perry, pp 480–481. Oregon State University, Corvallis.Google Scholar
  29. Lalonde M and Calvert H E 1979 Production ofFrankia hyphae and spores as an infective inoculant forAlnus species.In Symbiotic Nitrogen Fixation in the Management of Temperate forests. Eds. J C Gordon, C T Wheeler and D A Perry. pp 95–110. Oregon State University, Corvallis.Google Scholar
  30. Lalonde M and DeVoe I W 1975 Scanning electron microscopy ofAlnus srispa var.mollis Fern. root nodules endophyte. Arch. Microbiol. 105, 87–94.Google Scholar
  31. Lalonde M and DeVoe I W 1976 Origin of the membrane envelope enclosing theAlnus crispa var.mollis Fern. root nodule endophyte as revealed by freeze-etching microscopy. Physiol. Plant. Pathol. 8, 123–129.Google Scholar
  32. Lalonde M and Knowles R 1975. Ultrastructure, composition, and biogenesis of the encapsulation material surrounding the endophyte inAlnus crispa var.Mollis root nodules. Can. J. Bot. 53, 1951–1971.Google Scholar
  33. Lalonde M, Calvert H E and Pine S 1981 Isolation and use ofFrankia strains in actinorhizae formation.In Current Perspectives in Nitrogen Fixation. Eds. A H Gibson and W E Newton. pp 296–297. Australian Academy of Science, Canberra.Google Scholar
  34. Lopez M F and Torrey J G 1985 Enzymes of glucose metabolism inFrankia sp. J. Bacteriol. 162, 110–116.PubMedGoogle Scholar
  35. Maniatis T E, Fritsh E F and Sambrock J 1982 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  36. McCready R M and Reeve R M 1955 Test for pectin based on reaction of hydroxyamic acid with ferric ion. J. Agr. Food Chem. 3, 260–261.Google Scholar
  37. Miller I M and Baker D D 1985 The initiation, development and structure of root nodules inElaeagnus angustifolia L. (Elaeagnaceae). Protoplasma 128, 107–119.Google Scholar
  38. Miller I M and Baker D D 1986 Nodulation of actinorhizal plants byFrankia strains capable of both root hair infection and intercellular penetration. Protoplasma 131, 92–91.Google Scholar
  39. Miller J M 1972 Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  40. Mort A, Normand P and Lalonde M 1983 2-0-Methyl-D-mannose, a key sugar in the taxonomy ofFrankia. Can. J. Microbiol. 29, 993–1002.Google Scholar
  41. Newcomb W 1981 Fine structure of the root nodules ofDryas drummondii Richards (Rosaceae). Can. J. Bot. 63, 1292–1295.Google Scholar
  42. Normand P, Simonet P and Bardin R 1988 Conservation ofif sequences inFrankia. Mol. Gen. Genet. 213, 238–246.PubMedGoogle Scholar
  43. Pétré D, Béguin P, Millet J and Aubert J P 1985 Heterologous hybridization of bacterial DNA to the endoglucanases A and B structural genescelA andcelB ofClostridium thermocellum. Ann. Inst. Pasteur 136, 115–124.Google Scholar
  44. Prin Y and Rougier M 1986 Cytological and histochemical characteristics of the axenic root surface ofAlnus glutinosa (L.) Gaertn. Can. J. Bot. 64 2216–2222.Google Scholar
  45. Ray P M and Baker D B 1965 Effects of auxin on synthesis of oat coleoptile cell wall components. Plant Physiol. 40, 353–360.Google Scholar
  46. Reverchon S, Hugouvieux-Cotte-Pattat N and Robert-Baudouy J 1985 Cloning of genes encoding pectolytic enzymes from a genomic library of the pathogenic bacterium,Erwinia chrystanthemi. Gene 35, 121–130.PubMedGoogle Scholar
  47. Reverchon S, Van Gijsegem F, Rouve M, Kotoujansky A and Robert-Baudouy J 1986 Organisation of pectate lyase gene family inErwinia chrysanthemi. Gene 49, 215–224.PubMedGoogle Scholar
  48. Rodriguez-Quinones F, Banfalvi Z, Murphy P and Kondorosi A 1987 Interspecies homology of nodulation genes inRhizobium. Plant Mol. Biol. 8, 61–75.Google Scholar
  49. Simonet P, Haurat J, Normand P, Bardin R and Moiroud A 1986 Localization ofnif genes on a large plasmid inFrankia sp. strain ULQ0132105009. Mol. Gen. Genet. 204, 492–495.Google Scholar
  50. Solheim B and Fjellheim E 1984 Rhizobial polysaccharidedegrading enzymes from roots of legumes. Physiol. Plant. 62, 11–17.Google Scholar
  51. St-Laurent L and Lalonde M 1987 Isolation and characterization ofFrankia strains isolated fromMyrica gale. Can. J. Bot. 65, 1356–1363.Google Scholar
  52. Starr M P, Chaterjee A K, Starr P B and Buchanan G E 1977 Enzymatic degradation of polygalacturonic acid byYersinia andKlebsiella species in relation to clinical laboratory procedures. J. Clin. Microbiol. 6, 379–386.PubMedGoogle Scholar
  53. Tien T M, Diem H G, Gaskins M H and Hubbell D H 1981 Polygalacturonic acid transeliminase production byAzospirillum species. Can. J. Microbiol. 27, 426–431.PubMedGoogle Scholar
  54. Umali-Garcia M, Hubbell D H, Gaskins M H and Dazzo F B 1980 Association ofAzospirillum with grass roots. Appl. Env. Microbiol. 39 219–226.Google Scholar
  55. Vergnaud L, Chaboud A and Rougier M 1987 Preliminary analysis of root exudates of in vitro-micropropagatedAlnus glutinosa clones. Physiol. Plant. 70 319–326.Google Scholar
  56. Verma D P S, Zogbi V and Bal A K 1978 A cooperative action of plant andRhizobium to dissolve the host cell wall during development of root nodule symbiosis. Plant Sci. Lett. 13, 137–142.Google Scholar
  57. Wheeler C T, Crozier A and Sandberg G 1984 The biogenesis of indole-3-acetic acid byFrankia. Plant and Soil 78, 99–104.Google Scholar
  58. Wynne E C and Pemberton J M 1986 Cloning of a gene cluster fromCellovibrio mixtus which codes for cellulase, chitinase, amylase, and pectinase. Appl. Environ. Microbiol. 52, 1362–1367.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • A. Séguin
    • 1
  • M. Lalonde
    • 1
  1. 1.Centre de Recherche en Biologie Forestières, Faculté de Foresterie et de GéodésieUniversité LavalCanada

Personalised recommendations