Plant and Soil

, Volume 118, Issue 1–2, pp 51–59 | Cite as

Estimation of symbiotic dinitrogen fixation in alder forest by the method based on natural15N abundance

  • A. M. Domenach
  • F. Kurdali
  • R. Bardin


Annual N2-fixation in virgin forest ecosystems has been measured using a15N natural abundance (δ15N) procedure. This method was compared to a15N labelled fertilizer isotopic dilution method. For young alders (5–6 years old), δ15N of leaves gave results in good agreement with the isotopic dilution of fertilizer method. Since δ15N variability was expected according to plant physiology, for alder trees, leaves were collected at various heights after the end of the growing season, and, to take account of isotopic variations coming from derived inputs, δ15N of leaves of a large number of other plants in the same are were measured to give control values. Following this procedure, the δ15N method gave reliable evaluation of the nitrogen supply, by through N2-fixation, to alders, which were found to maintain high nitrogen fixing capacity in a sequence ranging from first stage of establishment of climactic formation. Moreover, the same method is reported to discriminate various origins ofAlnus glutinosa grown in natural conditions, possibly in relation to the genetic diversity of this species.

Key words

N2-fixation 15N fertilizer δ15tree 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amarger N, Mariotti A and Mariotti F 1977 Essai d'estimation du taux d'azote fixé symbiotiquement chez le lupin par le traçage isotopique naturel (15N). C.R. Acad. Sci. Paris 284, 2179–2182.Google Scholar
  2. Bardin R, Domenach A M and Chalamet A 1977 Rapports isotopiques naturels de l'azote. 11. Application à la mesure de la fixation symbiotique de l'azotein situ. Rev. Ecol. Biol. Sol 14, 395–402.Google Scholar
  3. Binckley D, Sollins P and McGill W B 1985 Natural abundance of nitrogen-15 as a tool for tracing alder-fixed nitrogen. Soil Sci. Soc. Am. J. 49, 444–447.Google Scholar
  4. Bremner J M and Edwards A D 1965 Determination and isotope-ratio analysis of different forms of nitrogen in soil. I. Apparatus and procedure for distillation of ammonium. Soil Sci. Soc. Am. Proc. 29, 504–507.Google Scholar
  5. Coté B and Camiré C 1984 Growth, nitrogen accumulation and symbiotic dinitrogen fixation in pure and mixed plantings of hybrid poplar and black alder. Plant and Soil 78, 209–220.Google Scholar
  6. Danière C, Capellano A et Moiroud A 1986 Dynamique de l'azote dans un peuplement naturel d'Alnus incana (L.) Moench. Acta Oecologica. Oecol. Plant. 7, No. 2, 165–175.Google Scholar
  7. Domenach A M and Chalamet A 1977 Rapports isotopiques de l'azote. I Premiers resultats: Sols de Dombes. Rev. Ecol. Biol. Sol. 14, 279–287.Google Scholar
  8. Domenach A M and Chalamet A 1979 Estimation d'azote f'e par le le soja à l'aide de deux méthodes d'analyses isotopiques. C R Acad. Sci. Paris 289, 291–294.Google Scholar
  9. Domenach A M, Kurdali F, Daniere C and Bardin R 1988 Determination de l'identité isotopique de l'azote fixé parFrankia associé au genre Alnus. Can. J. Bot 66, 1241–1247.Google Scholar
  10. Domenach A M and Kurdali F 1989 Influence des réserves azotées sur la formation des feuilles d'Alnus glutinosa (L.) Gaernt, et ses consequences dans l'estimation de la fixation d'azote, Can. J. Bot. “In press”.Google Scholar
  11. Feigenbaum S, Bielorai H, Erner Y and Dasberg S 1987 The fate of15N labelled nitrogen applied to mature citrus trees. Plant and Soil 97, 179–187.Google Scholar
  12. Fried M and Middleboe V 1977 Measurement of the amount of nitrogen fixed by a legume crop. Plant and Soil 47, 713–715.Google Scholar
  13. Gauthier H G, Diem H G, Dommergues Y R and Ganry F 1985 Assesment of N2 fixation byCasuarina equisetifolia inoculated withFrankia ORSO21001 using15N methods. Soil Biol. Biochem. 17, 375–379.Google Scholar
  14. Ledgard S F, Simpson J R, Freney J R and Bergersen F J 1985 Field evaluation of15N techniques for estimating nitrogen fixation in legume-grass association. Aust. J. Agric. Res. 36, 247–258.Google Scholar
  15. Mariotti A 1982 Apports de la géochimie isotopique à la connaissance du cycle de l'azote. Thesis, Paris VI University, 476 p.Google Scholar
  16. Pierre D 1979 Variations de l'abondance naturelle de l'isotope15N dans le sol au cours de l'humification de la matière organique. Ph D. Paris VI University, 83 p.Google Scholar
  17. Riga A, Van Praag H J and Brigode N 1971 Rapports isotopiques naturels de l'azote dans quelques sols forestiers et agricoles de Belgique soumis à divers traitements culturaux. Geoderma G, 213–222.Google Scholar
  18. Shearer G, Duffy J, Kohl D H and Commoner B 1974 A steady state model of isotopic fractionation accompanying nitrogen transformations in soil. Soil Sci Soc. Am. Proc. 38, 315–321.Google Scholar
  19. Shearer G and Kohl D H 1986 N2-fixation in field setting: Estimations based on natural15N abundance. Aust. J. Plant Physiol. 13, 699–756.Google Scholar
  20. Shearer G, Kohl D H, Virginia R A, Bryan B A, Skeeters J L, Nilsen E T, Sharifi M R and Rundel P W 1983 Estimates of N2-fixation from variation in the natural abundance of15N Sonoran desert ecosystems. Oecologia (Berlin) 56, 365–373.Google Scholar
  21. Steele K W, Bonish P M, Daniel R M, and O'Hara G W 1983 Effect of rhizobial strain and host plant on nitrogen isotopic fractionation in legumes. Plant Physiol. 72, 1001–1004.Google Scholar
  22. Yoneyama T, Fujita K, Yoshida T, Matsumoto T, Kambayashi I and Yazaki J 1986 Variation in natural abundance of15N among plant parts and in15N/14N fractionation during N2 fixation in the legume-Rhizobia symbiotic system. Plant Cell. Physiol. 27, No. 5, 791–799.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • A. M. Domenach
    • 1
  • F. Kurdali
    • 1
  • R. Bardin
    • 1
  1. 1.Ecologie microbienne UA CNRS 697Université Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations