Clinical Rheumatology

, Volume 12, Issue 3, pp 364–367 | Cite as

Architecture in cortical bone and ultrasound transmission velocity

  • P. Kann
  • U. Schulz
  • M. Nink
  • A. Pfützner
  • J. Schrezenmeir
  • J. Beyer


The square of ultrasound transmission velocity in a material is correlated to the modulus of elasticity, which is an indicator of its mechanical properties. This might make the measurement of ultrasound transmission velocity useful in the noninvasive diagnosis of bone diseases. Bone, however, is not an isotropic material but is architecturally structured. The aim of our study was to investigate and especially to quantify the influence of architecture in cortical bone on ultrasound transmission velocity. Twenty-two rectangular, flat specimens of cortical bone were prepared from diaphysis of fresh pig radius. Ultrasound transmission velocity was measured parallel and perpendicular to direction of Haversian channels. It was found to be 3647 ± 41 m/s parallel to and 2821 ± 29 m/s perpendicular to Haversian channels respectively (p<0.001). Our results clearly indicate that there is an important influence of architecture in cortical bone on ultrasound transmission velocity which has to be taken into account in its clinical use.

Key words

Ultrasound Cortical bone Mechanical Properties Architecture Modulus of Elasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agren, M., Karellas, A., Leahey, D., Marks, S., Baran, D. Ultrasound attenuation of the calcaneus: a sensitive and specific discriminator of osteopenia in postmenopausal women. Calcif Tissue Int 1991, 48, 240–244.PubMedGoogle Scholar
  2. 2.
    Baran, D.T., Kelly, A.M., Karellas, A., Gionet, M., Price, M., Leahey, D., Steuterman, S., McSherry, B., Roche, J. Ultrasound attenuation of the os calcis in women with osteoporosis and hip fractures. Calcif Tissue Int 1988, 43, 138–142.PubMedGoogle Scholar
  3. 3.
    Baran, D.T., McCarthy, C.K., Leahey, D., Lew, R. Broadband ultrasound attenuation of the calcaneus predicts lumbar and femoral neck density in Caucasian women: a preliminary study. Osteoporosis Int 1991, 1, 110–113.Google Scholar
  4. 4.
    McCloskey, E.V., Murray, S.A., Charlesworth, D., Miller, C., Fordham, J., Clifford, K., Atkins, R., Kanis, J.A. Assessment of broadband ultrasound attenuation in the calcis in vitro. Clinical Science 1990, 78, 221–225.PubMedGoogle Scholar
  5. 5.
    McCloskey, E.V., Murray, S.A., Miller, C., Charlesworth, D., Tindale, W., O'Doherty, D.P., Bickerstaff, D.R., Hamdy, N.A.T., Kanis, J.A. Broadband ultrasound attenuation in the os calcis: relationship to bone mineral at other skeletal sites. Clinical Science 1990, 78, 227–233.PubMedGoogle Scholar
  6. 6.
    Hosie, C.J., Smith, D.A., Deacon, A.D., Langton, D.M. Comparison of broadband ultrasonic attenuation of the os calcis and quantitative computed tomography of the distal radius. Clin Phys Physiol Meas 1987, 8, 303–308.CrossRefPubMedGoogle Scholar
  7. 7.
    McKelvie, M.L., Fordham, J., Clifford, C., Palmer, S.B. In vitro comparison of quantitative computed tomography and broadband ultrasonic attenuation of trabecular bone. Bone 1989, 10, 101–104.CrossRefPubMedGoogle Scholar
  8. 8.
    Resch, H., Pietschmann, P., Bernecker, P., Krexner, E., Willvonseder, R. Broadband ultrasound attenuation: a new diagnostic method in osteoporosis. AJR 1990, 155, 825–828.PubMedGoogle Scholar
  9. 9.
    Jeffcott, L.B., McCartney, R.N. Ultrasound as a tool for assessment of bone quality in horse. Veterinary Record 1985, 116, 337–342.PubMedGoogle Scholar
  10. 10.
    Rubin, C.T., Pratt, Jr., G.W., Porter, A.L., Lanyon, L.E., Poss, R. Ultrasonic measurement of immobilization-induced osteopenia: an experimental study in sheep. Calcif Tissue Int 1988, 42, 309–312.PubMedGoogle Scholar
  11. 11.
    Heany, R.P., Avioli, L.V., Chesnut III C.H., Lappe, J., Recker, R.R., Brandenburger, G.H. Osteoporotic bone fragility — detection by ultrasound transmission velocity. JAMA 1989, 261, 2986–2990.CrossRefPubMedGoogle Scholar
  12. 12.
    Kann, P., Schulz, G., Schulz, U., Klaus, D., Nink, M., Beyer, J. Apparent phalangeal ultrasound transmission velocity: relation to age and bone mineral density. Acta Endocrinol 1992, 126 Suppl 4, 27.Google Scholar
  13. 13.
    Lehmann, R., Wapniarz, M., Kvasnicka, H.M., Klein, K., Allolio, B. Assessment of bone fragility by ultrasound transmission velocity — influence of menopause and estrogen substitution therapy. Acta Endocrinol 1992, 126 Suppl 4, 27.Google Scholar
  14. 14.
    Miller, C.G., Herd, R.J.M., Ramalingham, T., Blake, G.M., Fogelman, I. Ultrasonic velocity measurements through the calcaneus: which velocity should we measure? In: Current Research in Osteoporosis and Bone Mineral Measurement II: 1992. Ed.: E.F.J. Ring, British Institute of Radiology, London, 1992, 45–46.Google Scholar
  15. 15.
    Sedlin, E.D., Hirsch, C. Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop Scandinav 1966, 37, 29–48.Google Scholar
  16. 16.
    Abendschein, W., Hyatt, G.W. Ultrasonics and selected properties of bone. Clin Orthop 1970, 69, 294–301.PubMedGoogle Scholar
  17. 17.
    Gobrecht, H. Bermann-Schäfer Lehrbuch der Experimentalphysik. Band I Mechanik, Akustik, Wärme. Berlin, New York, Walter de Gruyter, 1974, 240–248.Google Scholar
  18. 18.
    Greenfield, M.A., Craven, J.D., Huddlestone, A., Kehrer, M.L., Wishko, D., Stern, R. Measurement of the velocity of ultrasound in human cortical bone in vivo. Radiology 1981, 138, 701–710.PubMedGoogle Scholar
  19. 19.
    Maluche, H.H., Faugere, M.-C. Bone biopsies: Histology and histomorphometry of bone. In: Metabolic Bone Disease and Clinically Related Disorders. Eds.: Avioli, L.V., Krane, S.M., W.B. Saunders Company, Philadelphia, 283–328.Google Scholar
  20. 20.
    Ashman, R.B., Rho, J.Y., Turner, C.H. Anatomical variation of orthotropic elastic moduli of the proximal human tibia. J Biomechanics 1989, 22, 895–900.CrossRefGoogle Scholar
  21. 21.
    Yoon, H.S., Katz, J.L. Ultrasonic wave propagation in human cortical bone — I. Theoretical considerations for hexagonal symmetry. J Biomechanics 1976, 9, 407–412.CrossRefGoogle Scholar
  22. 22.
    Yoon, H.S., Katz, J.L. Ultrasonic wave propagation in human cortical bone — II. Measurements of elastic properties and microhardness. J Biomechanics 1976, 9, 459–464.CrossRefGoogle Scholar
  23. 23.
    Ashmann, R.B., Cowin, S.C., van Buskirk, W.C., Rice, J.C. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomechanics 1984, 17, 349–361.CrossRefGoogle Scholar
  24. 24.
    Katz, J.L., Yoon, H.S., Lipson, S., Maharidge, R., Meunier, A., Christel, P. The effects of remodeling on the elastic properties of bone. Calcif Tissue Int 1984, 36, S31-S36.PubMedGoogle Scholar
  25. 25.
    Slatopolsky, E., Coburn, J.W. Renal osteodystrophy. In: Metabolic Bone Disease and Clinically Related Disorders. Eds: Avioli, L.V., Krane, S.M., W.B. Saunders Company, Philadelphia, 1990, 452–474.Google Scholar

Copyright information

© Clinical Rheumatology 1993

Authors and Affiliations

  • P. Kann
    • 1
  • U. Schulz
    • 1
  • M. Nink
    • 1
  • A. Pfützner
    • 1
  • J. Schrezenmeir
    • 1
  • J. Beyer
    • 1
  1. 1.III. Medizinische Klinik und Poliklinik, Innere Medizin und EndokrinologieKlinikum der Johannes Gutenberg-Universität Langenbeckstraße 1MainzGermany

Personalised recommendations