Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Subcortical P30 potential following tibial nerve stimulation: Detection and normative data

  • 49 Accesses

  • 1 Citations

Abstract

Stimulation of the tibial nerve evokes a P30 far-field potential over the scalp which, like the median nerve P14, probably originates in the vicinity of the cervico-medullary junction. Unlike the P14 potential. P30 recording has not been systematically performed in clinical practice, probably because of doubts about the generator of the potential and the possibility of consistently recording it on the scalp after the unilateral stimulation of the tibial nerve. In this study, we tested the reliability of the tibial nerve scalp far-field P30 potential in 34 normal subjects using different montages, of which the Fpz-Cv6 derivation gave the highest signal to noise ratio, making it possible to obtain a P30 potential peaking at 29.2 ± 1.6 msec in all normal subjects. This suggests that this component should to be included in the routine recording of tibial nerve SEPs in order to evaluate the spinal and intracranial conduction of the somatosensory pathway separately.

Sommario

La stimolazione del nervo tibiale posteriore genera sullo scalpo un potenziale far-field P30 che origina, come il potenziale P14 da stimazione del nervo mediano, in prossimità della giunzione cervicomidollare.

A differenza della componente P14, la risposta P30 non viene sistematicamente valutata nella pratica clinica, probabilmente per le incertezze relative alla sua precisa origine e alla possibilità di registrare in modo consistente questa componente dopo stimolazione unilaterale del nervo tibiale. In questo studio abbiamo valutato l'affidabilità della registrazione del potenziale P30 in 34 soggetti normali utilizzando differenti montaggi.

Tra i diversi montaggi utilizzati la migliore risposta in termini di rapporto segnale/rumore veniva registrata nella derivazione Fpz-Cv6 che permetteva di ottenere un potenziale P30 con una latenza di 29.2±1.6 msec in tutti i soggetti normali.

Questo studio suggerisce che la registrazione di questa componente merita di essere inclusa nello studio dei PESS del nervo tibiale per una valutazione separata della conduzione sensitiva midollare e intracranica.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    Chiappa K.H., Ropper A.H.:Evoked potentials in clinical medicine. New Engl. J. Med. 306: 1205–1211, 1982.

  2. [2]

    Chiappa K.H.:Evoked potentials in clinical medicine. New York, Raven Press, 1990.

  3. [3]

    Desmedt J.E., Cheron G.:Central somatosensory conduction in man: neural generators and interpeak latencies of the far-field components recorded from neck and right or left scalp or earlobes. Electroencephalogr. Clin. Neurophysiol. 50: 382–403, 1980.

  4. [4]

    Dsmedt J.E., Cheron G.:Spinal and far-field components of human somatosensory evoked potentials to posterior tibial nerve stimulation analysed with oesophageal derivations and non-cephalic reference recording. Electroencephalogr. Clin. Neurophysiol. 56: 635–651, 1983.

  5. [5]

    Desmedt J.E.:La référence non-céphalique permet d'eviter des erreurs dans l'interprétation des potentiels évoqués somésthésiques chez l'Homme. Rev. E.E.G. Neurophysiol. Clin. 13: 349–366, 1984.

  6. [6]

    Desmedt J.E., Bourguet M.:Color imaging of parietaland frontal potential fields evoked by stimulation of median or posterior tibial nerve in man. Electroencephalogr. Clin. Neurophysiol. 62: 1–17, 1985.

  7. [7]

    Ertekin C.:Studies in the human evoked electrospinogram. II. The conduction velocity along the dorsal funiculus. Acta Neurol. Scand. 53: 21–38, 1976.

  8. [8]

    Guérit J.M., Opsomer R.J.:Bit-mapped imaging of somtosensory evoked potentials after stimulation of the posterior tibial nerves and dorsal nerve of the penis/clitoris. Electroencephalogr. Clin. Neurophysiol. 80: 228–237, 1991.

  9. [9]

    Halonen J.P., Jones S.J., Edgar M.A., Ransford A.O.:Conduction properties of epidurally recorded spinal cord potentials following lower limb stimulation in man. Electroencephalogr. Clin. Neurophysiol. 74: 161–174, 1989.

  10. [10]

    Kakigi R., Shibasaki H., Hashizume A., Kuroiwa Y.:Short-latency somatosensory evoked spinal and scalp-recorded potentials following posterior tibial nerve stimulation in man. Electroencephalogr. Clin. Neurophysiol. 53: 602–611, 1982.

  11. [11]

    Kakigi R., Jones S.J.:Influence of concurrent tactile stimulation on somatosensory evoked potentials following posterior tibial nerve stimulation in man. Electroencephalogr. Clin. Neurophysiol. 65: 118–129, 1986.

  12. [12]

    Kimura J., Mitsudome A., Beck D.O., Yamada T., Dickins Q.S.:Field distributions and antidromically activated digital nerve potentials: Model for far-field recording. Neurology 33: 1164–1169, 1983.

  13. [13]

    Kimura J., Mitsudome A., Yamada T., Dickins Q.S.:Stationary peaks from a moving source in far-field recording. Electroencephalogr. Clin. Neurophysiol. 58: 351–361, 1984.

  14. [14]

    Noël P., Desmedt J.E.:Cerebral and far-field somatosensory evoked potentials in neurological disorders involving the cervical spinal cord, brainstem, thalamus and cortex. In: Desmedt J.E. (Ed.),Progress in Clinical Neurophsiol, Vol. VII, pp. 205–230, 1980.

  15. [15]

    Perlik S.J., Fisher M.A.:Somatosensory evoked response evaluation of cervical spondylotic myelopathy. Muscle and Nerve 10: 481–489, 1987.

  16. [16]

    Riffel B., Stöhr M.:Spinale und subkortikale somatosensorisch evozierte Potentiale nach Stimulation des N. tibialis. Arch. Psychiat. Nervenkr 232: 251–263, 1982.

  17. [17]

    Seyal M., Emerson R.G., Pedley T.A.:Spinal and early scalp recorded components of the somatosensory evoked potential following stimulation of the posterior tibial nerve. Electroencephalogr. Clin. Neurophysiol. 55: 320–330, 1983.

  18. [18]

    Seyal M., Gabor A.J.:The human posterior tibial somatosensory evoked potential: synapse dependent and synapse independent spinal components. Electroencephalogr. Clin. Neurophysiol. 62: 323–331, 1985.

  19. [19]

    Seyal M., Kraft L.W., Gabor A.J.:Cervical synapse-dependent somatosensory evoked potential following posterior tibial nerve stimulation. Neurology 37: 1417–1421, 1987.

  20. [20]

    Urasaki E., Tokimura T., Yasukouchi H., Wada S., Yokota A.:P30 and N33 of posterior tibial nerve SSEPs are analogous to P14 and N18 of median nerve SSEPs. Electroencephalogr. Clin. Neurophysiol. 88: 525–529, 1993.

  21. [21]

    Vera C.L., Perot P.L., Fountain E.L.:Scalp recorded somatosensory evoked potentials to posterior tibial nerve stimulation in humans. Electroencephalogr. Clin. Neurophysiol. 56: 159–168, 1983.

  22. [22]

    Yamada T., Machida M., Kimura J.:Far-field somatosensory evoked potentials after stimulation of the tibial nerve. Neurology 32: 1151–1158, 1982.

Download references

Author information

Correspondence to Dr. M. Tinazzi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tinazzi, M., Zanette, G., Polo, A. et al. Subcortical P30 potential following tibial nerve stimulation: Detection and normative data. Ital J Neuro Sci 16, 623–628 (1995). https://doi.org/10.1007/BF02230912

Download citation

Key Words

  • Tibial nerve SEPs
  • Spinal conduction
  • Intracranial conduction