Bifurcation of degenerate homoclinic orbits in reversible and conservative systems

  • J. Knobloch
Article

Abstract

We study the bifurcation of homoclinic orbits from a degenerate homoclinic orbitγ in autonomous systems which are either conservative or reversible. More precisely we consider degenerate homoclinic orbits where along the orbit the tangent spaces to the stable and unstable manifolds of the equilibrium have an intersection which is two-dimensional. In the reversible case we demand thatγ is symmetric and we distinguish betweenγ being elementary and nonelementary. We show that the existence of elementary degenerate homoclinic orbits is a codimension-two phenomenon, while nonelementary homoclinic orbits and degenerate homoclinic orbits in conservative systems appear generically in one-parameter families. We give a complete description of the set of nearby 1-homoclinic orbits.

Key words

Bifurcation degenerate homoclinic orbits reversible systems conservative systems 

AMS classifications

58F 34C 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buffoni, B., Champneys, A. R., and Toland, J. F. (1996). Bifurcation and coalescence of plethora of homoclinic orbits for a Hamiltonian system.J. Dyn. Stab. Sys. 8, 221–281.Google Scholar
  2. 2.
    Devaney, R. (1976). Homoclinic orbits in Hamiltonian systems.J. Diff. Eqs. 21, 431–438.CrossRefGoogle Scholar
  3. 3.
    Devaney, R. (1977) Blue sky catastrophes in reversible and Hamiltonian systems.Ind. Univ. Math. J. 26, 247–263.CrossRefGoogle Scholar
  4. 4.
    Lin, X.-B. (1990). Using Melnikovs method to solve Shilnikov's problems.Proc. Roy. Soc. Edinburgh 116A, 295–325.Google Scholar
  5. 5.
    Vanderbauwhede, A. (1992). Bifurcation of degenerate homoclinics.Results Math. 21, 211–223.Google Scholar
  6. 6.
    Vanderbauwhede, A., and Fiedler, B. (1992). Homoclinic period blow-up in reversible and conservative systems.ZAMP 43, 291–318.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • J. Knobloch
    • 1
  1. 1.Department of MathematicsTechnical University of IlmenauIlmenauGermany

Personalised recommendations