Plant and Soil

, Volume 110, Issue 2, pp 207–212 | Cite as

Isolation and identification of root associated diazotrophs

  • Johanna Döbereiner


Diazotrophs have been isolated from the rhizosphere or roots of plants by many workers. To recognize a certain diazotroph as the most abundant bacterium at a certain site or as the principal agent responsible for N2-fixation is much more difficult. It is probable that many diazotrophs, including possibly the most efficient ones, have not been identified yet. The use of proper selective media which simulate the environment of the various diazotrophsin situ has led to the discovery of 10 new root-associated diazotrophs, three of them during 1986/1987 (Azospirillum halopraeferans, Herbaspirillum seropedicae and the recently proposedAcetobacter diazotrophicus). The importance of using a variety of carbon substrates in the growth media with pH indicators, and the use of N-free semi-solid media, is discussed. Recognition of plant-bacteria interactions requires, in addition to the identification of the bacteria, the demonstration of effects of the plant on the bacteria and of the bacteria on the plant. Confirmation of the identity of diazotrophs responsible for response of plants to inoculation must be made in experiments with strains labelled with antibiotic resistance or other markers. If establishment of the inoculated strain is demonstrated in plants grown in15N-labelled soil, the15N enrichment of the plants will reveal if any observed responses in N yield are due to N2-fixation or increased soil/fertilizer-N uptake.

Key words

bacteria diazotrophs rhizosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht S L, Okon Y, Lonquist J and Burris R H 1981 Nitrogen fixation by corn-Azospirillum associations in a temperate climate. Crop Sci. 21, 302–306.Google Scholar
  2. Baldani V L D, Baldani J I and Döbereiner J 1983 Effects ofAzospirillum inoculation on root infection and nitrogen incorporation in wheat. Can. J. Microbiol. 29, 924–929.Google Scholar
  3. Baldani J I, Baldani V L D, Seldin L and Döbereiner J 1986a Characterization ofHerbaspirillum seropedicae gen. Nov., sp. Nov.: A root-associated nitrogen-fixing bacterium. Int. J. Syst. Bacteriol. 36, 86–93.Google Scholar
  4. Baldani V L D, Alvarez M A B, Baldani J I and Döbereiner J 1986b Establishment of inocculatedAzospirillum spp in the rhizosphere and in roots of field growth wheat and sorghum. Plant and Soil 90, 35–46.Google Scholar
  5. Baldani V L D, Baldani J I and Döbereiner J 1987 Inoculation of field-grown wheat (Triticum aestivum) withAzospirillum spp. in Brazil. Biol. Fertil. Soil. 4, 37–40.Google Scholar
  6. Bally r, Thomas-Bauzon D, Heulin Th, Balandreau J, Richard C and De Ley J 1983 Determination of the most frequent N2-fixing bacteria in a rice rhizosphere. Can. J. Microbiol. 29, 881–887.Google Scholar
  7. Barraquio W L, Ladha J K and Watanabe J 1983 Isolation and identification of N2-fixingPseudomonas associated with wetland rice. Can. J. Microbiol. 29, 867–873.PubMedGoogle Scholar
  8. Beijerinck M W 1925 Über ein Spirillum, welches freien Stickstoff binden kann? Centralbl. Bakt. II Abt 63, 353–357.Google Scholar
  9. Beringer J E and Johnston A W B 1984 Concepts and terminology in plant-microbe interactions.In Plant-Microbe Interactions: Molecular and Genetic Perspectives. VI. Eds. T Kosuge and E W Nester. pp 3–18 Macmillan Publishing, New York.Google Scholar
  10. Boddey R M, Baldani V L D, Baldani J I and Döbereiner 1986 Effects of inoculation ofAzospirillum spp. on the nitrogen assimilation of field grown wheat. Plant and Soil 95, 109–121.Google Scholar
  11. Bülow J F N von and Döbereiner J 1975 Potential for nitrogen fixation in maize genotypes in Brasil. Proc. Natl. Acad. Sci. 72, 2389–2393.Google Scholar
  12. Cavalcante V and Döbereiner J 1988 A new acid-tolerant nitrogen-fixing bacterium associated with sugar-cane. Plant and Soil 108, 23–31.Google Scholar
  13. De Ley J 1986 DNA base composition and classification of some more free-living nitrogen-fixing bacteria. Antonie van Leeuwenhoek 34, 66–70.Google Scholar
  14. De Smedt J, Bauwens M, Tijtgat R and De Ley J 1980 Intra-and intergeneric similarities of ribosomal ribonucleic acid cistrons of free-living, nitrogen fixing bacteria. Int. Syst. Bacteriol. 30, 106–122.Google Scholar
  15. Döbereiner J 1961 Nitrogen-fixing bacteria of the genusBeijerinkia Derx in the rhizosphere of sugar cane. Plant and Soil 15, 211–216.Google Scholar
  16. Döbereiner J 1966Azotobacter paspali sp. n., uma bactéria fixadora de nitrogênio na rizosfera dePaspalum. Pesq. agropec. bras. 1, 357–365.Google Scholar
  17. Döbereiner J 1970 Further research onAzotobacter paspali and its variety: Specific occurrence in the rhizosphere ofPaspalum notatum Flügge. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt II 124, 224–230.Google Scholar
  18. Döbereiner J and Day J M 1976 Associative symbioses in tropical grasses: Characterization of microorganisms and dinitrogen fixing sites.In Proceedings of the Ist International Symposium on N2 Fixation. Eds. W E Newton and C J Nyman. pp 518–538 Washington State University Press, Pullman.Google Scholar
  19. Döbereiner J and Pedrosa F O 1987 Nitrogen-Fixing Bacteria in Nonleguminous Crop Plants 155pp. Brock/Springer Series in Contemporary Biosciences. Science Tech Publishers, Madison.Google Scholar
  20. Döbereiner J and Ruschel A P 1958 Uma nova espécie deBeijerinckia. Rev. Biol. 1, 261–272.Google Scholar
  21. Falk E C, Döbereiner J, Johnson J L and Krieg N R 1985 Deoxyribonucleic acid homology ofAzospirillum amazonense Magalhàeset al. 1984 and emendation of the description of the GenusAzospirillum. Int. J. Syst. Bacteriol. 35, 117–118.Google Scholar
  22. Falk E C, Johnson J L, Baldani V L D, Döbereiner J and Krieg N R 1986 Deoxyribonucleic and ribonucleic acid homology studies of the generaAzospirillum andConglomeromonas. Int. Syst. Bacteriol. 36, 80–85.Google Scholar
  23. Fred E B and Waksman S A 1928 Laboratory Manual of General Microbiology. McGraw-Hill Book Co. Inc., New York, London.Google Scholar
  24. Haahtela K, Wartiovaara T, Sundman V and Skujins J 1981 Root-associated N2 fixation (acetylene reduction) byEnterobacteriaceae andAzospirillum strains in cold-climate spodosols. Appl. Environ. Microbiol. 41, 203–206.Google Scholar
  25. Hill S and Postgate J R 1969 Failure of putative nitrogen-fixing bacteria to fix nitrogen. J. Gen. Microbiol. 58, 277–285.PubMedGoogle Scholar
  26. Krieg N R and Holt J G (Eds.) 1984 Bergey's Manual of Systematic Bacteriology. VI. Williams and Wilkins, Baltimore. 964p.Google Scholar
  27. Lima E, Boddey R M and Döbereiner J 1987 Quantification of biological nitrogen fixation associated with sugar cane using a15N aided nitrogen balance. Soil Biol. Biochem. 19, 165–170.Google Scholar
  28. Magalhães F M M, Baldani J I, Souto S M, Kuykendall J R and Döbereiner J 1983 A new acid tolerantAzospirillum species. An. Acad. Bras. Ciên. 55, 417–430.Google Scholar
  29. McClung C R and Patriquin D G 1980 Isolation of a nitrogenfixingCampylobacter species from the roots ofSpartina alterniflora Loisel. Can. J. Microbiol. 26, 881–886.PubMedGoogle Scholar
  30. Neal J L Jr and Larson R I 1976 Acetylene reduction by bacteria isolated from the rhizosphere of wheat. Soil Biol. Biochem. 8, 151–155.Google Scholar
  31. Okon Y 1985Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3, 223–228.Google Scholar
  32. Patriquin D G, Döbereiner J and Jain D K 1983 Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol. 29, 900–915.Google Scholar
  33. Reihold B, Hurek T, Fendrik I, Pot B, Gillis M, Kersters K, Thielemans S and De Ley J 1987Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth.). Int. J. Syst. Bacteriol. 37, 43–51.Google Scholar
  34. Schröder M 1932 Die Assimilation des Luftstickstoffs durch einige Bakterien. Zentralbl. Bakt. Parasitenkd. 85, 178–212.Google Scholar
  35. Seldin L, Van Elsas J D and Penido E G C 1984Bacillus azotofixans sp nov. a nitrogen fixing species from Brazilian soils and grass roots. Int. J. Syst. Bacteriol. 34, 451–456.Google Scholar
  36. Seldin L and Dubnau D 1985 Deoxyribonucleic acid homology amongBacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixingBacillus strains. Int. J. Syst. Bacteriol. 35, 151–154.Google Scholar
  37. Tarrand J J, Krieg N R and Döbereiner J 1978 A taxonomic study of theSpirillum lipoferum group, with descriptions of a new genus,Azospirillum gen. nov. and two species.Azospirillum lipoferum (Beijerinck) comb. nov. andAzospirillum brasilense sp. nov. Can. J. Microbiol. 24, 967–980.PubMedGoogle Scholar
  38. Tchan Y T, Wyszomirska-Dreher Z, New P B and Zhoy J C 1983 Taxonomy of theAzotobacteraceae determined by using immunoelectrophoresis. Int. J. Syst. Bacteriol. 33, 147–156.Google Scholar
  39. Thompson J P and Skerman V B D 1979Azotobacteraceae: The Taxonomy and Ecology of the Aerobic Nitrogen-Fixing Bacteria. Academic Press. London.Google Scholar
  40. Winogradsky S 1949 Microbiologie du sol. Masson et Cie, Paris. 861p.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Johanna Döbereiner
    • 1
  1. 1.EMBRAPA-UAPNPBSSeropédicaBrazil

Personalised recommendations