Insectes Sociaux

, Volume 34, Issue 4, pp 298–307 | Cite as

Maternal and pre eclosional factors affecting alarm behaviour in adult honey bees (Apis mellifera L.)

  • R. F. A. Moritz
  • E. E. Southwick
  • J. R. Harbo


The inheritance of a group character, the alarm behaviour of honey bee workers (Apis mellifera L.), was analyzed using a metabolic bio-assay. In a diallel test cross of preselected queens and drones, genetic variance and maternal effects on this behaviour were estimated. Crossfostering experiments showed that the hive environment during larval and pupal development has only minor effects on alarm behaviour.


Genetic Variance Apis Mellifera Minor Effect Maternal Effect Group Character 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Maternale und präimaginale Kolonieeffekte auf Alarmverhalten von Honigbienen (Apis mellifera L.)


Die Vererbung eines Gruppenmerkmales, der Alarmierungsreaktion von Arbeiterinnen (Apis mellifera L.) wurde in einem quantitativen Stoffwechseltest überprüft. In einer diallelen Testkreuzung von selektierten Königinnen und Drohnen konnten genetische Varianzkomponenten sowie maternale Effekte geschätzt werden. Experimente, in denen Eier von fremden Pflegevölkern zu Imagines aufgezogen wurden, zeigten, dass die Stockumwelt während der Larval-und Pupalentwicklung keinen Einfluss auf das spätere Alarmverhalten der Arbeiterinnen nimmt.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chauvin R., 1981. — La «survivone» substance qui induit la survie des abeilles isolées.Ins. Soc., 28, 223–231.Google Scholar
  2. Collins A.M., 1979. — Genetics of the response of the honeybee to an alarm chemical, isopentyl acetate.J. Apic. Res., 18, 285–291.Google Scholar
  3. Collins A.M., 1982. — Behaviour genetic of honey bee alarm communication, pp. 307–311, in:The biology of social insects. Ed. Breed, al. Westview Press, Boulder, Colorado.Google Scholar
  4. Collins A.M., Rinderer T.E., Harbo J.R., Bolton A.B., 1982 — Colony defense by Africanized and European honey bees.Science, 218, 72–77.Google Scholar
  5. Collins A.M., Rinderer T.E., Harbo J.R., Brown M.A., 1984. — Heritabilities and correlations for several characters of the honeybee.J. Hered., 75, 135–140.Google Scholar
  6. Dickerson G.E., 1962. — Implications of genetic-environmental interaction in animal breeding.Anim. Prod., 4, 47–55.Google Scholar
  7. Falconer D.S., 1980. —Introduction to quantitative genetics, 2nd edn. Longman, London, New York.Google Scholar
  8. Gordon D.M., 1982. — Social context: If ant behaviour depends on it, should our methods be leaving it out? pp. 396–397, in:The biology of social insects, Ed. Breed, al. Westview Press, Boulder, Colorado.Google Scholar
  9. Koeniger G., 1986. — Reproduction ofApis mellifera, pp. 255–282, in:Bee breeding and genetics, Ed. Rinderer, T.E. Academic Press, New York.Google Scholar
  10. Laidlaw H.H., Page R.E., 1984. — Polyandry in honey bees (Apis mellifera L.): Sperm utilization and intracolony relationship.Genetics, 108, 985–997.Google Scholar
  11. Lindauer M., 1954. — Temperaturregulierung und Wasserhaushalt im Bienenstaat.Z. vergl. Physiol., 36, 391–432.Google Scholar
  12. Maschwitz U., 1964. — Gefahrenalarmstoffe und Gefahrenalarmierung bei sozialen Hynopteren.Z. vergl. Physiol., 47, 596–655.Google Scholar
  13. Moritz R.F.A., 1982. — Maternale Effekte bei der Honigbiene (Apis mellifera L.).Z. Tierzuecht, Zuechtungsbiol., 99, 139–148.Google Scholar
  14. Moritz R.F.A., 1983. — Homogenous mixing of honeybee semen by centrifigation.J. Apic. Res., 22, 249–255.Google Scholar
  15. Moritz R.F.A., 1985. — Heritability of the port copping stage inApis mellifera L. and its relation toVarroatose resistance.J. Hered., 76, 267–270.Google Scholar
  16. Moritz R.F.A., 1986. — Estimating genetic variance of group characters: social behaviour in honey bees (Apis mellifera L.).Theor. Appl. Genet., 72, 513–517.Google Scholar
  17. Moritz R.F.A., 1986b. — Intracolonial worker relationship and sperm competition in the honey bee workers (Apis mellifera L.).Behav. Ecol. Sociobiol., 21, 53–57.Google Scholar
  18. Moritz R.F.A., Klepsch A., 1985. — Estimating heritabilities of worker characters. A new approach using laying workers of the Cape honeybee (Apis mellifera capensis Esch.).Apidologie, 16, 47–56.Google Scholar
  19. Moritz R.F.A., Southwick E.E., 1987. — Phenotype interactions in group behaviour of honey bee workers (Apis mellifera L.)Behav. Ecol. Sociobiol., 21, 53–57.Google Scholar
  20. Moritz R.F.A., Southwick E.E., Breh M., 1985. — A metabolic test for the quantitative analysis of alarm behaviour in the honey bee (Apis mellifera L.).J. Exp. Zool., 235, 1–5.Google Scholar
  21. Oldroyd B., Moran C., 1983. — Heritability of worker characters in the honeybee (Apis mellifera L.).Aust. J. Sci., 36, 323–332.Google Scholar
  22. Pirchner F., Ruttner F., Ruttner H., 1962. — Erbliche Unterschiede zwischen Ertragseigenschaften von Bienen.21st Int. Cong. Entomol., Vienna, Vol. 2, 510–516.Google Scholar
  23. Rinderer T.E., Collins A.M., Brown M.A., 1983. — Heritabilities and correlations of the honeybee: Response toNosema apis, longevity and alarm response to isopentyl acetate.Apidologie, 14, 79–85.Google Scholar
  24. Riska B., Rutledge J.J., Atchley W.R., 1985. — Genetic analysis of crossforstering data with sire and dam records.J. Hered., 76, 247–250.PubMedGoogle Scholar
  25. Ritter W., 1982. — Experimenteller Beitrag zur Thermoregulation des Bienenvolkes (Apis mellifera L.).Apidologie, 13, 169–185.Google Scholar
  26. Sander K., 1984. — Maternal effects on insect development. In.Advances in invertebrate reproduction 3. Ed.: Engels W. Elsevier Publ. Amsterdam, New York.Google Scholar
  27. Seeley T.E., 1974. — Atmospheric carbon dioxide regulation in honey-bee (Apis mellifera) colonies.J. Insect. Physiol., 20, 2301–2305.PubMedGoogle Scholar
  28. Sitbon G., 1967. — L'effet de groupe et la mortalité des abeilles isolées ou groupées.Ann. Abeille, 10, 67–82.Google Scholar
  29. Sitbon G., 1971. — Corpora allata, neurosécrétion et effet de groupe chez l'abeille d'hiver.Ins. Soc., 18, 161–172.Google Scholar
  30. Soller M., Bar Cohen N.G., 1968. — Some observations on the heritability and genetic correlation between honey production and brood area in the honeybee.J. Apic. Res., 6, 37–43.Google Scholar
  31. Southwick E.E., 1985. — Allometric relations, metabolism and heat conductance in clusters of honey bees at cool temperatures.J. Comp. Physiol., 156, 143–149.Google Scholar
  32. Southwick E.E., Moritz R.F.A., 1985. — Metabolic response to alarm pheromone in honey bees.J. Insect. Physiol., 31, 389–392.Google Scholar
  33. Southwick E.E., Mugaas J.W., 1971. — A hypothetical homeotherm. The honey bee hive.Comp. Biochem. Physiol., 46 A, 935–944.Google Scholar
  34. Stort A.C., 1974. — Genetic study of aggressiveness of two subspecies ofApis mellifera in Brazil. 1. Some tests to measure aggressiveness.J. Apic. Res., 13, 33–38.Google Scholar
  35. Willham R.L., 1964. — The covariance between relatives for characters composed of contributed by related individuals.Biometrics, 19, 18–25.Google Scholar

Copyright information

© Masson 1987

Authors and Affiliations

  • R. F. A. Moritz
    • 1
  • E. E. Southwick
    • 1
  • J. R. Harbo
    • 2
  1. 1.Department of Biological SciencesState University of New YorkBrockportUSA
  2. 2.Bee Breeding and Stock Center LaboratoryUSDA, ARSBaton RougeUSA

Personalised recommendations