Advertisement

Calcified Tissue Research

, Volume 24, Issue 1, pp 243–248 | Cite as

An X-ray study of the paracrystalline nature of bone apatite

  • E. J. Wheeler
  • D. Lewis
Original Papers

Summary

X-ray diffraction patterns from oriented bone sections show that the crystalline apatite content of untreated mature cortical bovine bone has, in fact, a paracrystalline structure (i.e., no long range order). There is anisotropy in both lattice distortions and the sizes of the coherently diffracting domains. The paracrystalline mean distance fluctuations, (g) were found to be 1.5 (±0.1)% and 2.9 (±0.2)% for the basal and prism planes respectively, the corresponding paracrystalline sizes being 220 (±20) and 70 (±10) Å. The paracrystalline structure became more ordered above 600°C, suggesting the association of hydroxyl and possibly carbonate and other ions with the paracrystalline structure. The paracrystalline model for bone apatite helps explain anomalies between X-ray and electron microscope measurements of crystal size and also some of the biological functions of the crystalline apatite.

Key words

Paracrystallinity Hydroxyapatite Bone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armstrong, W.D., Singer, L.: Composition and constitution of the mineral phase of bone. Clin. Orthop.38, 179–190 (1965)PubMedGoogle Scholar
  2. 2.
    Bienenstock, A., Posner, A.S.: Calculation of X-ray intensities from arrays of small crystallities of hydroxyapatite. Arch. Biochem. Biophys.124, 604–607 (1968)PubMedGoogle Scholar
  3. 3.
    Blitz, R.M., Pellegrino, E.D.: The hydroxyl content of calcified tissue mineral. Calcif. Tissue Res.7, 259–263 (1971)PubMedGoogle Scholar
  4. 4.
    Blitz, R.M., Pellegrino, E.D.: The chemical anatomy of bone: 1 A comparative study of bone composition in sixteen vertebrates J. Bone Joint Surg.A 51, 456–466 (1969)Google Scholar
  5. 5.
    Blumenthal, N.C., Betts, F., Posner, A.S.: Effect of carbonate and biological macromolecules on formation of hydroxylapatite. Calcif. Tissue Res.18, 81–90 (1975)PubMedGoogle Scholar
  6. 6.
    Blumenthal, N.C., Posner, A.S.: Hydroxylapatite: Mechanism of formation and properties. Calcif. Tissue Res.13, 235–243 (1973)PubMedGoogle Scholar
  7. 7.
    Carlstrom, D., Glas, J.E.: The size and shape of the apatite crystallites in bone as determined from line-broadening measurements on oriented specimens. Biochem. Biophys. Acta35, 46–53 (1959)PubMedGoogle Scholar
  8. 8.
    Cervinka, L., Hosemann, R., Vogel, W.: Paracrystalline lattice distortions and microdomains in manganese ferrites near the cubic-to-tetragonal transition. Acta Cryst.A 26, 277–289 (1970)Google Scholar
  9. 9.
    Eurin, Ph., Penisson, J.M., Bourret, A.: Étude du reseau de germes dans l'alliage CoPt equiatomique par microscopie electronique et diffraction optique. Acta Metall.21, 559–570 (1973)Google Scholar
  10. 10.
    Glas, J.E., Omnel, K.A.: Studies on the ultrastructure of dental enamel — 1: Size and shape of apatite crystallites as deduced from X-ray diffraction data. J. Ultrastruct. Res.3, 334–344 (1960)PubMedGoogle Scholar
  11. 11.
    Harper, R.A., Posner, A.S.: Measurement of non-crystalline calcium phosphate in bone mineral. Proc. Soc. Exp. Biol. Med.122, 137–142 (1966)PubMedGoogle Scholar
  12. 12.
    Hosemann, R.: Microparacrystallites and paracrystalline superstructures. Makromol. Chem. Suppl.1, 559–577 (1975)Google Scholar
  13. 13.
    Hosemann, R., Bagchi, S.N.: Direct analysis of diffraction by matter. Amsterdam: North-Holland 1962Google Scholar
  14. 14.
    Hosemann, R., Wilke, W., Balta Calleja, F.J.: Twist-Korngrenzen und andere parakristalline Gittersstörungen in Polyäthylen-Einkristallen. Acta Cryst.21, 118–123 (1966)Google Scholar
  15. 15.
    LeGros, R.Z., Trautz, O.R., LeGeros, J.P., Klein, E.: Carbonate substitution in the apatite structure. Bull. Soc. Chim. Fr. (no special) 2e trimestre 1712–1718 (1968)Google Scholar
  16. 16.
    Lundy, D.R., Eanes, D.E.: An X-ray line broadening study of turkey leg tendon. Arch. Oral. Biol.18, 813–826 (1973)PubMedGoogle Scholar
  17. 17.
    Mabie, C.P., Wallace, B.M.: Optical, physical and chemical properties of pineal gland calcifications. Calcif. Tissue Res.16, 59–71 (1974)PubMedGoogle Scholar
  18. 18.
    Moriwaki, Y., Ida, K., Yamaga, R.: Lattice imperfections of carbonate-containing hydroxyapatite. Nippon Kagaku Kaishi5, 796–800 (1975)Google Scholar
  19. 19.
    Posner, A.S., Betts, F.: Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc. Chem. Res.8, 273–281 (1975)Google Scholar
  20. 20.
    Posner, A.S., Eanes, E.D., Harper, R.A., Zipkin, I.: X-ray diffraction analysis of the effect of fluoride on human bone apatite. Archs. Oral Biol.8, 549–570 (1963)Google Scholar
  21. 21.
    Termine, J.D., Posner, A.S.: Infra-red analysis of rat bone: age dependency of amorphous and crystalline mineral fractions. Science153, 1523–1525 (1966)PubMedGoogle Scholar
  22. 22.
    Vatassery, G.T., Armstrong, W.D., Singer, L.: Determination of hydroxyl content of calcified tissue mineral. Calcif. Tissue Res.5, 183–188 (1970)PubMedGoogle Scholar
  23. 23.
    Wagner, C.N.J.: Local atomic arrangements studied by X-ray diffraction (J.B. Cohen and J.E. Hilliard, eds.), p. 218, New York: Gordon and Breach 1966Google Scholar
  24. 24.
    Young, R.A.: Implications of atomic substitutions and other structural details in apatites. J. Dent. Res.53, 193–203 (1974)PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • E. J. Wheeler
    • 1
  • D. Lewis
    • 1
  1. 1.Department of Chemical PhysicsUniversity of SurreyGuildfordUK

Personalised recommendations