Journal of Medical Systems

, Volume 4, Issue 2, pp 253–288 | Cite as

The dynamic spatial reconstructor

A computed tomography system for high-speed simultaneous scanning of multiple cross sections of the heart
  • Richard A. Robb
  • Arnold H. Lent
  • Barry K. Gilbert
  • Aloysius Chu


A new generation whole-body computed tomography system has been developed to provide accurate visualization and measurement of the vital functions of the heart, lungs, and circulation. This dynamic spatial reconstructor system (DSR) provides stop-action (01-sec), rapidly sequential (60-per-second), synchronous volume (240 simultaneous adjacent 1-mm-thick transaxial sections) reconstructions and display of the full anatomic extents of the internal and external surfaces of the heart throughout successive cardiac cycles, and will permit visualization of the three-dimensional vascular anatomy and circulatory functions in all regions of the body of patients with cardiovascular and other circulatory disabilities.


Compute Tomography Tomography System Cardiac Cycle External Surface Vascular Anatomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfidi, R. J., MacIntyre, W. J., and Haager, J. R., The effects of biological motion on CT resolution.Am. J. Roentgenol. 127:11–15, 1976.Google Scholar
  2. 2.
    Boyd, D. P., Korobin, M. T., and Moss, A., Engineering status of computerized tomographic scanning.Opt. Eng. 16(1):37–44, 1977.Google Scholar
  3. 3.
    Ritman, E. L., Robb, R. A., Johnson, S. A., Chevalier, P. A., Gilbert, B. K., Greenleaf, J. F., Sturm, R. E., and Wood, E. H., Quantitative imaging of the structure and function of the heart, lungs, and circulation.Mayo Clin. Proc. 53:3–11, 1978.PubMedGoogle Scholar
  4. 4.
    Robb, R. A., Ritman, E. L., Gilbert, B. K., Kinsey, J. H., Harris, L. D., and Woods, E. H., The DSR: A high-speed three-dimensional x-ray computed tomography system for dynamic spatial reconstruction of the heart and circulation.IEEE Trans. Nucl. Sci. NS-26(2):2713–2717, 1979.Google Scholar
  5. 5.
    Gilbert, B. K., Storma, M. T., Ballard, K. C., Hobrock, L. W., James, C. E., and Wood, E. H., A programmable dynamic memory allocation system for input/output of digital data into standard computer memories at 40 megasamples/s.IEEE Trans. Comput. C-25(11):1101–1109, 1976.Google Scholar
  6. 6.
    Gilbert, B. K., Harris, L. D., and Chu, A., Special purpose digital processor architectures and numerical approximation methods for application to high-speed computerized tomography.Computer Aided Tomography and Ultrasonics in Medicine, IFIP (J. Raviv, J. F. Greenleaf, and G. T. Herman, eds.). North-Holland, Amsterdam, 1979, pp. 13–36.Google Scholar
  7. 7.
    Traub, A. C., A new three-dimensional display technique. Report #M68-4 of the Mitre Corporation, Bedford, Mass., 1968.Google Scholar
  8. 8.
    Harris, L. D., Robb, R. A., Yuen, T. S., and Ritman, E. L., The display and visualization of 3-D reconstructed anatomic morphology: Experience with the thorax, heart, and coronary vasculature of dogs.J. Comput. Assisted Tomogr. 3(4):439–446, 1979.Google Scholar
  9. 9.
    Minerbo, G. N., Convolutional reconstruction from cone beam projection data.IEEE Trans. Nucl. Sci. NS-26(2):2682–2684, 1979.Google Scholar
  10. 10.
    Altschuler, M. D., et al., Demonstration of a software package for the reconstruction of the dynamically changing structure of the human heart from cone beam x-ray projection. Technical Report No. MIPG32, Department of Computer Science, SUNY/Buffalo, 1979.Google Scholar
  11. 11.
    Altschuler, M. D., Chang, T., and Chu, A., Rapid computer generation of three-dimensional phantoms and their cone beam x-ray projections.SPIE Appl. Opt. Instrum. Med. VII 173:287–290, 1979.Google Scholar
  12. 12.
    Herman, G. T., Lakshminarayanan, A. V., Naparstek A., Ritman, E. L., Robb, R. A., and Wood, E. H., Rapid computerized tomography.Medical Data Processing (M. Laudet, J. Anderson, and S. Begon, eds.), Taylor and Francis. London, 1976, pp. 581–598.Google Scholar
  13. 13.
    Shepp, L. A., and Logan, B. F., The Fourier reconstruction of a head section.IEEE Trans. Nucl. Sci. NS-21(3):21–43, 1974.Google Scholar
  14. 14.
    Lewitt, R. M., Processing of incomplete measurement data in computed tomography.Med. Phys. 6(5):412–417, 1979.CrossRefGoogle Scholar
  15. 15.
    Sturm, R. E., Ritman, E. L., Johnson, S. A., Wondrow, M. A., Erdman, D. I., and Wood, E. H., Prototype of a single x-ray video imaging chain designed for high temporal resolution computerized tomography by means of an electronic scanning dynamic spatial reconstruction system.Proc. San Diego Biomed. Symp. 15:181–188, 1976.Google Scholar
  16. 16.
    Robb, R. A., and Gilbert, B. K., Evaluation of performance of the dynamic spatial reconstructor: A system for high-speed synchronous volume computed tomography of the body.Ill-Posed Problems: Theory and Practice. (M. Z. Nashed, ed.), D. Reidel, Dordrecht-Boston-London, 1980.Google Scholar
  17. 17.
    Muhm, D. R., Brown, L. R., and Crowe, J. K., Detection of pulmonary nodules by computed tomography.Am. J. Roentgenol. 128:267–270, 1977.Google Scholar
  18. 18.
    Ruegsegger, P. E., Ritman, E. L., and Wood, E. H., Performance of a cylindrical CT scanning system for dynamic studies of the heart and lungs.Proc. San Diego Biomed. Symp. 16:143–157, 1977.Google Scholar
  19. 19.
    Brooks, R. A., and DiChiro, G., Beam hardening in x-ray computed tomography.Phys. Med. Biol. 21(3):390–398, 1976.CrossRefGoogle Scholar
  20. 20.
    Ruegsegger, P., Hangartner, Th., Keller, H. U., and Hinderling, Th., Standardization of computed tomography images by means of a material-selective beam hardening correction.J. Comput. Assisted Tomogr. 2(2):184–188, 1978.Google Scholar
  21. 21.
    Robb, R. A., Lent, A. H., and Chu, A., A computer-based system for high-speed three-dimensional imaging of the heart and circulation: Evaluation of performance by simulation and prototype.Proceedings of the Thirteenth Hawaii International Conference on System Sciences. Vol. 3, 1980, pp. 384–405.Google Scholar
  22. 22.
    Boyd, D. P., Status of diagnostic x-ray CT.IEEE Trans. Nucl. Sci. NS-26(2):2836–2839, 1979.Google Scholar
  23. 23.
    Robb, R. A., Greenleaf, J. F., Ritman, E. L., Johnson, S. A., Sjostrand, J. D., Herman, G. T., and Wood, E. H., Three-dimensional visualization of the intact thorax and contents: A technique for crosssectional reconstruction for multiplanar x-ray views.Comput. Biomed. Res. 7:395–419, 1974.CrossRefPubMedGoogle Scholar
  24. 24.
    Robb, R. A., Harris, L. D., and Ritman, E. L., Computerized x-ray reconstruction tomography in stereometric analysis of cardiovascular dynamics.Proc. Soc. Photo-Opt. Instrum. Eng. 89:69–82, 1976.Google Scholar
  25. 25.
    Liu, H. K., Two- and three-dimensional boundary detection.Comput. Graphics Image Processing 6(2):123–134, 1977.Google Scholar
  26. 26.
    Wood, E. H., New vistas for the study of structural and functional dynamics of the heart, lungs, and circulation by non-invasive numerical tomographic vivisection.Circulation 56(4):506–520, 1977.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Richard A. Robb
    • 1
  • Arnold H. Lent
    • 1
  • Barry K. Gilbert
    • 1
  • Aloysius Chu
    • 1
  1. 1.Biodynamics Research Unit, Department of Physiology and BiophysicsMayo FoundationRochester

Personalised recommendations