European Spine Journal

, Volume 3, Issue 2, pp 91–97 | Cite as

A universal spine tester for in vitro experiments with muscle force simulation

  • H. -J. Wilke
  • L. Claes
  • H. Schmitt
  • S. Wolf
Original Articles


We report a new apparatus to determine the quasistatic, three-dimensional, load-displacement characteristics of spines including muscle forces. The loading frame can be adapted to mono- and polysegmental specimens from the lumbar or cervical spine as well as to entire spines. Three force and three moment components can be applied in either direction individually or in combination with no constraint on the resulting motion; the loads can be applied at user-chosen rates of application and release with continuous recording of displacements, so as to study either creep or relaxation. The loads and displacement-measuring devices are computer-controlled. Thus, this testing device provides a tool for many kinds of stability tests and for basic research of spine biomechanics. A first experiment shows that the application of muscle forces significantly affects the load-deformation characteristics and intradiscal pressure.

Key words

Biomechanics Spine tester Spinal stability Muscle simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abumi K, Panjabi MM, Duranceau J (1989) Biomechanical evaluation of spinal fixation devices. 111. Stability provided by six spinal fixation devices and interbody bone graft. Spine 14: 1249–1255PubMedGoogle Scholar
  2. 2.
    Ashman RB, Galpin RD, Corin JD, Johnston CE (1989) Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model. Spine 14:1398–1405PubMedGoogle Scholar
  3. 3.
    Brown T, Hansen RJ, Yorra AJ (1957) Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs. J Bone Joint Surg [Am] 39:1135–1164Google Scholar
  4. 4.
    Eggli S, Schläpfer F, Angst M, Witschger P, Aebi M (1992) Biomechanical testing of three newly developed transpedicular multisegmental fixation systems. Eur Spin J 1: 109–116CrossRefGoogle Scholar
  5. 5.
    El-Bohy AA, Yang K-H, King AI (1989) Experimental verification of facet load transmission by direct measurements of facet lamina contact pressure. J Biomech 22:931–941CrossRefPubMedGoogle Scholar
  6. 6.
    Goel VK, Goyal S, Clark C, Nishiyama K (1985) Kinematics of the whole lumbar spine. Spine 10:543–554PubMedGoogle Scholar
  7. 7.
    Goel VK, Nye TA, Clark CR, Nishiyma K, Weinstein JN (1987) A technique to evaluate an internal spine device by use of the Selspot system — an application to the Luque closed loop. Spine 12:150PubMedGoogle Scholar
  8. 8.
    Markolf KL (1972) Deformation of the thoracolumbar intervertebral joints in response to external loads. J Bone Joint Surgery [Am] 54:511–533Google Scholar
  9. 9.
    Mickley K, Nolte LP (1989) Experimentelle Bestimmung biomechanischer Modellparameter ein- und mehrsegmenteller Lendenwirbelabschnitte. VDI Berichte 731:443–452Google Scholar
  10. 10.
    Mickley K, Nolte LP, Stumpf H, Lange H, Beerens C, Krämer J (1990) Eine Versuchsanlage für biomechanische Studien an menschlichen Wirbelsdulenprdparaten. Messtechnische Briefe 26:10–16Google Scholar
  11. 11.
    Nachemson A (1963) The influence of spinal movements on the lumbar intradiscal pressure and on the tensile stresses in the annulus fibrosus. Acta Orthop Scand 33:183–207PubMedGoogle Scholar
  12. 12.
    Nachemson AL (1981) Disc pressure measurements. Spine 6: 93–97PubMedGoogle Scholar
  13. 13.
    Panjabi MM, Brand RA, White AA (1976) Mechanical properties of the human thoracic spine. J Bone Joint Surg [Am] 58: 642–652Google Scholar
  14. 14.
    Panjabi MM (1977) Experimental determination of spinal motion segment behavior. Orthop Clin North Am 8:169–181PubMedGoogle Scholar
  15. 15.
    Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices. I. A conceptual framework. Spine 13:1129–1134PubMedGoogle Scholar
  16. 16.
    Panjabi MM, Brand RM, White AA (1976) Three-dimensional flexibility and stiffness properties of the human thoracic spine. J Biomech 9:185–192CrossRefPubMedGoogle Scholar
  17. 17.
    Panjabi MM, Krag MH, White AA, Southwick WO (1977) Effects of preload on load displacement curves of the lumbar spine. Orthop Clin North Am 8:181–193PubMedGoogle Scholar
  18. 18.
    Panjabi MM, Abumi K, Druanceau J, Crisco JJ (1988) Biomechanical evaluation of spinal fixation devices. 11. Stability provided by eight internal fixation devices. Spine 13:1135–1140PubMedGoogle Scholar
  19. 19.
    Panjabi MM, Abumi K, Duranceau J, Oxland T (1989) Spinal stability and intersegmental muscle forces — a biomechanical model. Spine 14:194–200PubMedGoogle Scholar
  20. 20.
    Panjabi MM, Yamamoto I, Oxland TR, Crisco JJ, Freedman D (1991) Biomechanical stability of five pedicle screw fixation systems in a human lumbar spine instability model. Clin Biomech 6:197–205CrossRefGoogle Scholar
  21. 21.
    Sutterlin CE, McAffee PC, Warden KE, Rey RM, Farey ID (1988) A biomechanical evaluation of cervical spinal stabilization method in a bovine model — static and cyclical loading. Spine 13:795–802PubMedGoogle Scholar
  22. 22.
    Ulrich C, Woersdoerfer O, Klaff R, Claes L, Wilke H-J (1991) Biomechanics of fixation systems to the cervical spine. Spine 16:4–9Google Scholar
  23. 23.
    Wen N, Dantin JJ, Lavaste F (1992) Static biomechanical properties of normal and degenerated human cervical spine in vitro. VIII Meeting of the European Society of Biomechanics, Rome, June 21–24, 198Google Scholar
  24. 24.
    White AA, Panjabi MM (1980) Clinical biomechanics of the spine, 2nd edn. Lippincott, PhiladelphiaGoogle Scholar
  25. 25.
    Wilke H-J, Fischer K, Kugler A, Magerl F, Claes L, Wörsdörfer O (1992) In vitro intestigations of internal fixation systems of the upper cervical spine. I. Stability of the direct anterior screw fixation of'the odontoid. Eur Spine J 1: 185–190CrossRefGoogle Scholar
  26. 26.
    Wilke H-J, Fischer K, Kugler A, Magerl F, Claes L, Wörsdörfer O (1992) In vitro intestigations of internal fixation systems of the upper cervical spine. II. Stability of posterior atlanto-axial fixation techniques. Fur Spine J 1: 191–199CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • H. -J. Wilke
    • 1
  • L. Claes
    • 1
  • H. Schmitt
    • 1
  • S. Wolf
    • 1
  1. 1.Abteilung für Unfallchirurgische Forschung und BiomechanikUniversität UlmUlmGermany

Personalised recommendations