Journal of Quantitative Criminology

, Volume 10, Issue 2, pp 159–179 | Cite as

Recidivism among drug offenders: A survival analysis of the effects of offender characteristics, type of offense, and two types of intervention

  • John R. Hepburn
  • Celesta A. Albonetti

Abstract

The determinants of recidivism are increasingly becoming the focus of public concern. This study explores the relative effect of type of intervention, offender characteristics, and type of incident offense on time to a petition to revoke probation and time to a probation revocation. Our analysis of intervention effects includes both parametric and nonparametric estimation procedures. Estimating five distributional forms of survival and a proportional hazard model for each measure of recidivism, the analysis indicates no difference in the effect of a program of drug monitoring and treatment, compared to drug monitoring only, for either of the two measures of recidivism. In addition, findings indicate that younger offenders and African American offenders have a shorter time to a petition to revoke probation. We also found a reduced time to failure for a probation revocation for African American offenders and offenders with a prior arrest record. Our findings offer empirical support for a reconsideration of the type of intervention effective in deterring offenders while on probation.

Key words

recidivism survival models drug monitoring probation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, P. D. (1984).Event History Analysis, Sage, Beverly Hills, CA.Google Scholar
  2. Britt, C. L., III, Gottfredson, M. R., and Goldkamp, J. S. (1992). Drug testing and pretrial misconduct: An experiment on the specific deterrent effects of drug monitoring defendants on pretrial release.J. Res. Crime Delinq. 29: 62–78.Google Scholar
  3. Carver, J. A. (1986). Drugs and crime: Controlling use and risk through testing. NIJ Reports SNI 199 (Sept./Oct.).Google Scholar
  4. Chung, C., Schmidt, P., and Witte, A. (1991). Survival analysis: A survey.J. Quant. Criminol. 7: 59–98.Google Scholar
  5. Cox, D. R. (1972). Regression models and life tables.J. Roy. Stat. Soc. Ser. B 34: 187–220.Google Scholar
  6. Elandt-Johnson, R. C., and Johnson, N. L. (1980).Survival Models and Data Analysis, John Wiley & Sons, New York.Google Scholar
  7. Goldkamp, J. M., Gottfredson, M., and Weiland, D. (1990). Pretrial drug testing and defendent risk.J. Crim. Law Criminol. 81: 585–652.Google Scholar
  8. Harrell, F. E., Jr. (1986).The PHGLM procedure. SUGI Supplemental Library User's Guide, SAS Institute, Inc., Cary, NC.Google Scholar
  9. Kalbfleisch, J. D., and Prentice, R. L. (1980).The Statistical Analysis of Failure Time Data, John Wiley & Sons, New York.Google Scholar
  10. Kaplan, E. L., and Meier, P. (1985). Nonparametric estimates from incomplete observations.J. Am. Stat. Assoc. 53: 457–481.Google Scholar
  11. Land, K. C., McCall, P. L., and Williams, J. R. (1990). Something that works in juvenile justice.Eval. Rev. 14: 574–606.Google Scholar
  12. Lattimore, P. K., Witte, A. D., and Baker, J. R. (1990). Experimental assessment of the effect of vocational training on youthful property offenders.Eval. Rev. 14: 115–133.Google Scholar
  13. Lee, E. (1980).Statistical Methods for Survival Data Analysis, Wadsworth, Belmont, CA.Google Scholar
  14. MacKenzie, D. L. (1991). The parole performance of offenders released from shock incarceration (boot camp prisons): A survival time analysis.J. Quant. Criminol. 7: 213–238.Google Scholar
  15. Maguire, K. E., Flanagan, T. J., and Thornberry, T. P. (1988). Prison labor and recidivism.J. Quant. Criminol. 4: 3–18.Google Scholar
  16. Maltz, M. (1984).Recidivism, Academic Press, New York.Google Scholar
  17. Rauma, D., and Berk, R. A. (1987). Remuneration and recidivism: The long-term impact of unemployment compensation on ex-offenders.J. Quant. Criminol. 3: 3–27.Google Scholar
  18. Rhodes, W. (1986). A survival model with dependent competing events and right-hand censoring: Probation and parole as an illustration.J. Quant. Criminol. 2: 113–137.Google Scholar
  19. SAS Institute, Inc. (1985).SAS User's Guide: Statistic Version 5 Edition, SAS Institute, Cary, NC.Google Scholar
  20. Schmidt, P., and Witte, A. D. (1980). Evaluating correctional programs.Eval. Rev. 4: 585- 600.Google Scholar
  21. Schmidt, P., and Witte, A. D. (1988).Predicting Recidivism Using Survival Models, Springer-Verlag, New York.Google Scholar
  22. Schmidt, P., and Witte, A. D. (1989). Predicting criminal recidivism using “split populationℍ survival time models.J. Econometrics 40: 141–159.Google Scholar
  23. Smith, D. A., Wish, E. D., and Jarjoura, G. R. (1989). Drug use and pretrial misconduct in New York City.J. Quant. Criminol. 5: 101–126.Google Scholar
  24. Speckart, G., Anglin, M. D., and Deschenes, E. P. (1989). Modeling the longitudinal impact of legal sanctions on narcotics use and property crime.J. Quant. Criminol. 5: 33–56.Google Scholar
  25. Stewart, K., Gruenewald, P. J., and Parker, R. N. (1992). Assessing legal change: Recidivism and administrative per se laws.J. Quant. Criminol. 8: 375–394.Google Scholar
  26. Visher, C. A., and Linster, R. L. (1990). A survival model of pretrial failure.J. Quant. Criminol. 6: 153–184.Google Scholar
  27. Visher, C. A., Lattimore, P. K., and Linster, R. L. (1991). Predicting the recidivism of serious youthful offenders using survival models.Criminology 29: 329–366.Google Scholar
  28. Walker, S. (1989).Sense and Nonsense About Crime: A Policy Guide, Brooks/Cole, Pacific Grove, CA.Google Scholar
  29. Wheeler, G. R., and Hissong, R. V. (1988). A survival time analysis of criminal sanctions for misdemeanor offenders.Eval. Rev. 12: 510–527.Google Scholar
  30. Witte, A. D., and Schmidt, P. (1977). An analysis of recidivism, using the truncated lognormal distribution,Appl. Stat. 26: 302–311.Google Scholar
  31. Yezer, A., Trost, R., and Toborg, M. (1989). Assessment of Pretrial Testing in the District of Columbia: The Efficacy of Using Urine Test Results in Risk Classification of Arrestees. Report submitted to the National Institute of Justice, Washington, DC.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • John R. Hepburn
    • 1
  • Celesta A. Albonetti
    • 2
  1. 1.School of Justice StudiesArizona State UniversityTempe
  2. 2.Department of SociologyTexas A&M University, Academic BuildingCollege Station

Personalised recommendations