Numerische Mathematik

, Volume 16, Issue 3, pp 181–204

Eigenvectors of real and complex matrices byLR andQR triangularizations

  • G. Peters
  • J. H. Wilkinson
Handbook Series Linear Algebra

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dekker, T. J., Hoffman, W.: Algol 60 procedures in linear algebra. Mathematical Centre Tracts, 23. Mathematisch Centrum Amsterdam (1968).Google Scholar
  2. 2.
    Francis, J. G. F.: TheQR transformation — a unitary analogue to theLR transformation. Computer Journal4, 265–271, 332–345 (1961/62).Google Scholar
  3. 3.
    Martin, R. S., Wilkinson, J. H.: Similarity reduction of a general matrix to Hessenberg form. Num. Math.12, 349–368 (1968).Google Scholar
  4. 4.
    —— The modifiedLR algorithm for complex Hessenberg matrices. Num. Math.12, 369–376 (1968).Google Scholar
  5. 5.
    ——, Peters, G., Wilkinson, J. H.: TheQR algorithm for real Hessenberg matrices. Num. Math.14, 219–231 (1970).Google Scholar
  6. 6.
    Parlett, B. N., Reinsch, C.: Balancing a matrix for calculation of eigenvalues and eigenvectors. Num. Math.13, 293–304 (1969).Google Scholar
  7. 7.
    Rutishauser, H.: Solution of eigenvalue problems with theLR transformation. NBS Applied Math. Series, No. 49 (1958).Google Scholar
  8. 8.
    Wilkinson, J. H.: The algebraic eigenvalue problem. London: Oxford University Press 1965.Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • G. Peters
    • 1
  • J. H. Wilkinson
    • 1
  1. 1.Division of Numerical and Applied MathematicsNational Physical LaboratoryTeddington, MiddlesexGreat Britain

Personalised recommendations