Completely integrable bi-Hamiltonian systems

  • Rui L. Fernandes
Article

Abstract

We study the geometry of completely integrable bi-Hamiltonian systems and, in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the affine structure determined by the action variables. This generalizes a result of Brouzet for dimension four.

Key words

Bi-Hamiltonian system completely integrable system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, R., and Marsden, J. E. (1978).Foundations of Mechanics, 2nd ed., Benjamin, New York.Google Scholar
  2. Arnol'd, V. I. (1988).Mathematical Methods of Classical Mechanics, 2nd ed., Springer-Verlag, Berlin.Google Scholar
  3. Arnol'd, V. I., and Givental, A. B. (1988). Symplectic Geometry. In Arnol'd, V. I., and Novikov, S. P. (eds.),Dynamical Systems IV, Encyclopeadia of Mathematical Sciences, Vol. 4, Springer-Verlag, Berlin.Google Scholar
  4. Bobenko, A. I., Reyman, A. G., and Semenov-Tian-Shansky, M. A. (1989). The Kowaleski top 99 years later: A Lax pair, generalizations and explicit solutions.Commun. Math. Phys. 122, 321–354.Google Scholar
  5. Brouzet, R. (1990). Systèmes bihamiltoniens et complète intégrabilité en dimension 4.C. R. Acad. Sci. Paris 311 (Ser. I), 895–898.Google Scholar
  6. Darboux, G. (1887).LeÇons sur la Théorie Générale des Surfaces, I. ptie., Gauthiers-Villars, Paris.Google Scholar
  7. De Fillipo, S., Vilasi, G., Marmo, G., and Salermo, M. (1984). A new characterization of completely integrable systems.Nuovo Cim. 83B, 97–112.Google Scholar
  8. Lichnerowitz, A. (1977). Les variétés de Poisson et leurs algèbres de Lie associées.J. Diff. Geom. 12, 253–300.Google Scholar
  9. Liouville, J. (1855). Note sur l'intégration des équations différentielles de la dynamique.J. Math. Pures Appl. 20, 137–138.Google Scholar
  10. Magri, F. (1978). A simple model of the integrable Hamiltonian equation.J. Math. Phys. 19, 1156–1162.Google Scholar
  11. Magri, F., and Morosi, C. (1984). A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds.Quaderno S19, Departamento de Matemática Università degli Studi di Milano, Milano.Google Scholar
  12. Morandi, G., Ferrario, C., Lo Vecchio, G., Marmo, G., and Rubano, C. (1990). The inverse problem in the calculus of variations and the geometry of the tangent bundle.Phys. Rep. 188, 147–284.Google Scholar
  13. Nijenhuis, A. (1951).X n−1-forming sets of eigenvectors.Kon. Nederland Akad. Wet. Proc. 54A, 200–212.Google Scholar
  14. Oevel, W., and Ragnisco, O. (1989).R-matrices and higher Poisson brackets for integrable systems.Physica A 161, 181–220.Google Scholar
  15. Olver, P. (1990). Canonical forms and integrability of bi-Hamiltonian systems.Phys. Lett. A 148, 177–187.Google Scholar
  16. Rauch-Wojciechowski, S. (1991). A bi-Hamiltonian formulation for separable potentials and its application to the Kepler problem and the Euler problem of two centers of gravitation. Preprint Lith-Mat-R-91-17, Universitetet i Linköping, Sweden.Google Scholar
  17. Weinstein, A. (1983). The local structure of Poisson manifolds.J. Diff. Geom. 18, 523–557.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • Rui L. Fernandes
    • 1
    • 2
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolis
  2. 2.Departamento de MatemáticaInstituto Superior TécnicoLisbonPortugal

Personalised recommendations