Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Les phénomènes de pseudopupille dans l'œil composé deDrosophila

  • 234 Accesses

  • 145 Citations

Summary

In the compound eyes of the fruitflyDrosophila, the dioptric system of each ommatidium is able to form virtual images of the receptor terminals (rhabdomere tips) throughout the whole depth of the eye. It is shown (§ 3) that 3 characteristic superposition phenomena occur for images formed by distinct ommatidia (Figs. 3b and 5). The most remarkable superposition appears at the point where the optical axes of all ommatidia converge (center of curvature of the eye). At this level, highly magnified virtual and erect images of corresponding rhabdomeres are superimposed, giving rise to adeep pseudopupil (Fig. 9). Since in the ommatidia ofDrosophila the rhabdome shows a pattern of 7 distal endings (Fig. 8a), the resultingdeep pseudopupil consists of 7 light spots with a similar pattern (Figs. 8b, 7, 11). Conversely thedeep pseudopupil of compound eyes which have fused rhabdomes consists of a single light spot (Fig. 19). Such pseudopupils can be best observed either with antidromic or with orthodromic illumination of the eye, according to the specific transmission or reflection properties of the rhabdomes.

Thedeep pseudopupil of Dipterans is not to be confused with thecorneal pseudopupil (Fig. 13 a) and especially not with thereduced corneal pseudopupil observed with a reduced aperture of the microscope (Fig. 13 b), in spite of the remarkable similarity of these phenomena regarding the asymmetry and the dimension of their pattern (comp. Figs. 7 and 13b). Thereduced corneal pseudopupil consists of 7 facets whereas thedeep pseudopupil consists of 7 virtual images of the receptor endings.

From the results of Kirschfeld (1967), the appearance of areduced corneal pseudopupil like Fig. 13 b on the eye ofDrosophila proves that 7 receptors located in 7 neighbouring ommatidia look in the same direction in space (Fig. 14). The existence of such an optical arrangement favors the view that the eye ofDrosophila, like that ofMusca, belongs to the “neural superposition type”.

A comparative study between thedeep pseudopupil and thereduced corneal pseudopupil leads to the following geometric relation, which is specific of theDrosophila eye and probably of all compound eyes of the “neural superposition type”:

$$\frac{D}{e} = \frac{R}{{f'}},$$

, whereD is the diameter of a facet,e the distance between the centers of two neighbouring rhabdomere endings,R the radius of curvature of the eye, andf′ the focal length (in air) of a corneal lens.

Other types of pseudopupils, commonly appearing as dark spots in compound eyes, are explained on a basis similar to thedeep pseudopupil of Drosophila (§5). In fact, the dioptric system of an ommatidium can give virtual images not only of its distal receptor endings but of the whole intensity distribution (i.e. the whole “luminous structure”) which is present in its internal focal plane. If this structure is simple, thedeep pseudopupil, resulting from superpositions of virtual images, is likewise simple (Figs. 16 and 17). If the “luminous structure” is complex, as for example in the eye of the butterflyVanessa (Fig. 18a schematized in Fig. 18c), then thedeep pseudopupil shows the same complexity (Fig. 18 b and d).

In compound eyes which lack screening pigment between their crystalline cones, one can seesecondary pupils of the 1st and 2nd order as described by Exner. Again they may be explained by superpositions of virtual images in the depth of the eye, according to Fig. 20. Moreover, thedeep pseudopupil of the “optical superposition eye” may be due to the fact that the more distal converging system of an ommatidium forms virtual images not of the rhabdome endings themselves but of real images of these endings (Fig. 21).

Although the phenomenon of thedeep pseudopupil is not perceived by the animal, it is of interest for the experimenter who can use it: 1) to study the light receptors easily in the eye of live and intact animals, 2) to measure the physiological divergence angle between adjoining ommatidia, 3) to study the movement of the visual axis and the retinomotor adaptation of the receptors, and 4) to stimulate simultaneously manycorresponding receptors belonging to different ommatidia. The advantages of thisin vivo technique are discussed in § 6.3.

This is a preview of subscription content, log in to check access.

Références

  1. Autrum, H.J., Wiedemann, I.: Versuche über den Strahlengang im Insektenauge (Appositionsauge). Z. Naturforsch.17b, 480–482 (1962).

  2. Braitenberg, V.: Patterns of projection in the visual system of the fly; 1) Retina-Lamina projections. Exp. Brain Res.3, 271–298 (1967).

  3. Burkhardt, D., Motte, I. de la, Seitz, G.: Physiological optics of the compound eye of the blowfly. (Dans: “The functional organization of the compound eye”; Proc. Symp. Stockholm, 1965). Ed. par C. G. Bernhard. Oxford: Pergamon Press 1966.

  4. Burtt, E. T., Patterson, J. A.: Infernal muscle in the eye of an insect. Nature (Lond.)228, 183–184 (1970).

  5. Cajal, S. R., Sanchez, D.: Contributiòn al conocimiento de los centros nerviosos de los insectos. Trab. Lab. Invest. Biol. (Madrid)13, 1–164 (1915).

  6. Carricaburu, P.: Contribution à la dioptrique oculaire des Arthropodes: détermination des indices des milieux transparents de l'ommatidie. (Thèse, Paris 1967, publiée par Soc. hist. nat. Afrique du nord: N∘ 9, nouv. Série, 1968.)

  7. Demoll, R.: Die Physiologie des Facettenauges. Ergebn. Fortschr. Biol.2, 431–513 (1910).

  8. Dietrich, W.: Die Facettenaugen der Dipteren. Z. wiss. Zool.92, 465–539 (1909).

  9. Eckert, M.: Hell-Dunkel-Adaptation in aconen Appositionsaugen der Insekten. Zool. Jb. Physiol.74, 102–120 (1968).

  10. Exner, S.: Die Physiologie der fazettierten Augen von Krebsen und Insekten. Leipzig und Wien: Deutike 1891.

  11. Franceschini, N., Kirschfeld, K.: Etude optiquein vivo des éléments photorécepteurs dans l'œil composé deDrosophila. Kybernetik8, 1–13 (1971).

  12. - -: An automatic gain control in the photoreceptors ofDrosophila. En préparation.

  13. Gemperlein, R., Järvilehto, M.: Direkte Beobachtung der Rhabdomere beiCalliphora erythrocephala (Meig.). Z. vergl. Physiol.65, 445–454 (1969).

  14. Hengstenberg, R.: Das Augenmuskelsystem der StubenfliegeMusca Domestica. 1) Analyse der “clock spikes” und ihrer Quellen. Kybernetik9, 56–77 (1971).

  15. Hertweck, H.: Anatomie und Variabilität des Nervensystems und der Sinnesorgane vonDrosophila Melanogaster (Meigen). Z. wiss. Zool.139, 559–663 (1931).

  16. Homann, H.: Der Vertikalilluminator als Augenspiegel bei kleinen Augen. Biol. Zbl.44, 582–592 (1924).

  17. Horridge, G. A.: Pigment movement and the crystalline threads of the firefly eye. Nature (Lond.)218, 778–779 (1968).

  18. Kirschfeld, K.: Das anatomische und das physiologische Sehfeld der Ommatidien im Komplexauge vonMusca. Kybernetik2, 249–257 (1965).

  19. —: Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge vonMusca. Exp. Brain Res.3, 248–270 (1967).

  20. —, Franceschini, N.: Optische Eigenschaften der Ommatidien im Komplexauge vonMusca. Kybernetik5, 47–52 (1968).

  21. —— Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges vonMusca. Kybernetik6, 13–22 (1969).

  22. Kuiper, J. W.: The optics of the compound eye. Symp. Soc. exp. Biol.16, 58–71 (1962).

  23. Kunze, P.: Histologische Untersuchungen zum Bau des Auges vonOcypode cursor (Brachyura). Z. Zellforsch.82, 466–478 (1967).

  24. —: Eye glow in the moth and superposition theory. Nature (Lond.)223, 1172–1174 (1969).

  25. -:Verhaltensphysiologische und optische Experimente zur Superpositionstheorie der Bildentstehung in Komplexaugen. Verh. Zool. Ges. in Köln (1970).

  26. Leydig, F.: Zum feineren Bau der Arthropoden. Müller's Arch. Physiol., S. 431 (1855).

  27. Lüdtke, H.: Retinomotorik und Adaptationsvorgänge im Auge des Rückenschwimmers (Notonecta glauca, L.). Z. vergl. Physiol.35, 129–152 (1953).

  28. Miller, W. H., Bernard, G. D.: Butterfly glow. J. Ultrastruct. Res.14, 286–294 (1968).

  29. ——, Allen, J. J.: The optics of insect compound eyes. Science162, 760–767 (1968).

  30. Power, M. E.: The brain ofDrosophila melanogaster. J. Morph.72, 517–559 (1943).

  31. Scholes, J.: The electrical response of the retinal receptors and the lamina in the visual system of the flyMusca. Kybernetik6, 149–162 (1969)

  32. Seitz, G.: Der Strahlengang im Appositionsauge vonCalliphora erythrocephala (Meig.). Z. vergl. Physiol.59, 205–231 (1968).

  33. Serres (Marquis de): Über die Augen der Insekten (traduction en Allemand de J. F. Dieffenbach). Theod. Christ. Friedr. Enslin (1826).

  34. Strausfeld, N. J.: Golgi studies on insects. Part II: the optic lobes of Diptera. Phil. Trans. B258, 135–223 (1970).

  35. Trujillo-Cenoz, O., Melamed, J.: Compound eye of dipterans: anatomical basis for integration. An electron microscopy study. J. Ultrastruct. Res.16, 395–398 (1966).

  36. Waddington, C. H., Perry, M. M.: The ultrastruct. of the developing eye ofDrosophila. Proc. Roy. Soc. B153, 155–178 (1960).

  37. Yagi, N., Koyama, N.: The compound eye of Lepidoptera. Tokyo: Shinkyo Press 1963.

Download references

Author information

Additional information

Partie d'une thèse de doctorat d'Etat es Sciences physiques de l'Université de Grenoble (1971), enregistrée au C.N.R.S. (Paris) sous le N∘ A. 0. 3802.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Franceschini, N., Kirschfeld, K. Les phénomènes de pseudopupille dans l'œil composé deDrosophila . Kybernetik 9, 159–182 (1971). https://doi.org/10.1007/BF02215177

Download citation