Journal of Fusion Energy

, Volume 14, Issue 4, pp 329–341 | Cite as

Nuclear fuels for low-beta fusion reactors: Lithium resources revisited

  • Dieter Eckhartt


In searching to attain optimum conditions for the controlled release of nuclear energy by fusion processes, the stationary confinement of low-pressure ring-shaped plasmas by strong magnetic fields is now regarded as the most promising approach. We consider a number of fuel combinations that could be operated in such low-beta reactor systems and look upon the relevant fuel reserves. The “classical” D-T-Li cycle will be used as a standard and is extensively discussed therefore. It could supply most of mankind's future long-term power needs—but only on condition that the required lithium fuel can be extracted from seawater at reasonable expenses. The estimated landbound lithium reserves are too small to that end, they will last for about 500 years at most, depending on forecasts of future energy consumption and on assumptions about exploitable resources. Recovery of lithium from seawater would extend the possible range by a factor of 300 or so, provided that extraction technologies which are at present available in the laboratory, could be extended to a very large and industrial scale. Deuterium is abundant on earth but D-D fusion is difficult, if not impossible, to be achieved in the low-beta systems presently investigated for D-T fusion. The same arguments apply to so-called “advanced” concepts, such as the D-3He and the D-6Li cycles.


Lithium Deuterium Nuclear Fuel Nuclear Energy Fusion Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. P. Furth (1990). Magnetic confinement fusion.Science,249, 1522.Google Scholar
  2. 2.
    D. M. Meade (1974). Effect of high-Z impurities on the ignition and Lawson conditions for a thermonuclear reactor.Nucl. Fusion,14, 289.Google Scholar
  3. 3.
    O. N. Jarviset al. (1991). Triton burn-up in JET. Proc. 18th Eur. Conf. Contr. Fusion and Plasma Physics, Vol. 15 C, Part I, Paper A6, p. 1–21.Google Scholar
  4. 4.
    D. L. Book (1987). NRL plasma formulary. Naval Research Laboratory, Washington, D.C.Google Scholar
  5. 5.
    D. Reiteret al. (1990). Burn condition, helium particle confinement and exhaust efficiency.Nucl. Fusion,30, 2141.Google Scholar
  6. 6.
    S. Goers (1994). Untersuchung der Bedingungen für stationäres Brennen von Fusions-plasmen, Internal Report KFA-IPP-IB 02/94, Jülich, Germany, p. 70.Google Scholar
  7. 7.
    J. D. Galambos and Y. K. Martin Peng (1991). Ignition and burn criteria for D-3He tokamak and spherical torus reactors.Fusion Technol.,19, 31.Google Scholar
  8. 8.
    D. R. Mikkelsen and C. E. Singer (1983). Optimization of tokamak reactors.Nucl. Technol./Fusion,4, 239.Google Scholar
  9. 9.
    ITER Conceptual Design Report (1991). ITER Documentation Series No. 18, IAEA, Vienna, p. 107.Google Scholar
  10. 10.
    W. Kernbichleret al. (1987). Deuterium based fuel cycles.Plasma Phys. Contr. Nucl. Fus. Res.,3 (IAEA, Vienna), p. 383.Google Scholar
  11. 11.
    B. A. Trubnikov (1979). Universal coefficients for synchrotron emission from plasma configurations.Rev. Plasma Phys.,7, (Plenum Press), p. 370.Google Scholar
  12. 12.
    J. M. Dawson (1981). Advanced fusion reactors. InFusion, Vol. 1, B, E. Teller, ed., p. 453.Google Scholar
  13. 13.
    J. R. McNally, Jr. (1982). Physics of fusion cycles.Nucl. Technol./Fusion,2, 9.Google Scholar
  14. 14.
    J. L. Wittenberget al. (1986). Lunar basis.Fusion Technol.,10, 167.Google Scholar
  15. 15.
    G. L. Kulcinskiet al. (1989). Lunar source of 3-He for commercial fusion power.Fusion Technol.,15 (Part 2B), p. 1233.Google Scholar
  16. 16.
    R. Bünde (1986).Controlled Nuclear Fusion, J. Raederet al., eds. (John Wiley & Sons), Table 5.1, p. 275.Google Scholar
  17. 17.
    BP Statistical Review of World Energy. The British Petroleum Company, London (1991).Google Scholar
  18. 18.
    S. Glasstone and R. H. Lovberg (1960).Controlled Thermonuclear Fusion (D. van Nostrand Company, Princeton, NJ), p. 4.Google Scholar
  19. 19.
    D. Rose and M. C. Clark (1961).Plasmas and Controlled Fusion (MIT Press, John Wiley & Sons, New York), p. 11.Google Scholar
  20. 20.
    J. D. Vine, ed. (1976). Lithium Reserves and Requirements by the Year 2000. U.S. Geolog. Survey, Professional Paper 1005.Google Scholar
  21. 21.
    R. K. Evans (1978). Lithium reserves and resources.Energy,3 (Pergamon Press), p. 379.Google Scholar
  22. 22.
    J. D. Vine (1980). Where on Earth is all that Lithium. U.S. Geolog. Survey, Open-File Report 80-1234.Google Scholar
  23. 23.
    L. E. Schultze and D. J. Bauer (1984). Recovering Lithium Chloride from a Geothermal Brine. U.S. Bureau of Mines, Report R.I. 8883.Google Scholar
  24. 24.
    R. H. Lien (1985). Recovery of Lithium from a Montmorillonite-Type Clay. U.S. Bureau of Mines Report R.I. 8967.Google Scholar
  25. 25.
    D. I. Bleiwas and J. S. Coffmann (1986). Lithium Availability —Market Economy Countries. U.S. Bureau of Mines, Information Circular I. C. 9102.Google Scholar
  26. 26.
    Terrance F. Anstellet al. (1990). International Strategic Minerals Inventory Summary Report-Lithium. U.S. Geolog. Survey Circular 930–1.Google Scholar
  27. 27.
    Ch. Kippenberger and U. Krauset al. (1988). Angebot und Nachfrage mineralischer Rohstoffe. Bd. XXI. Lithium. Federal Institute of Geosciences and Natural Resources (BGR), Berlin, Hannover, Germany.Google Scholar
  28. 28.
    F. Barthletet al. (1989). Posteditorial on Lithium Occurrences in Western Europe, EC and other Countries—Potential Future Lithium Supplies for Nuclear Fusion Technology. Federal Institute of Geosciences and Natural Resources (BGR), Hannover, Germany.Google Scholar
  29. 29.
    John L. Mero (1965).Mineral Resources of the Sea. (Elsevier Oceanographic Series, Amsterdam, London, New York).Google Scholar
  30. 30.
    D. C. Crozier (1986). Lithium—Resources and prospects.Mining Magazine, February, p. 148.Google Scholar
  31. 31.
    R. J. Bauer (1990).Ullmann's Encyklopedia of Industrial Chemistry, Vol. A15 (VCH Verlagsgesellschaft Weinheim, Germany), p. 398.Google Scholar
  32. 32.
    R. H. Singleton (1979). Lithium-Mineral Commodity Profiles—September 1979, p. 5 and Table 4, U.S. Bureau of Mines.Google Scholar
  33. 33.
    Y. Miyai, K. Ooi, and S. Katoh (1988). Recovery of lithium from seawater using a new type of ion-sieve adsorbent based on Mg Mn2O4.Separation Sci. Technol.,23, 179.Google Scholar
  34. 34.
    Y. Miyai (1994). Neo-lithic discovery.Look Japan (July), 28.Google Scholar
  35. 35.
    Lithium—no shortage in supply. (1987).Indust. Minerals (June), 30.Google Scholar
  36. 36.
    G. E. Ericksen. Lithium resources of Salars in the Central Andes. Ref. 20, p. 66.Google Scholar
  37. 37.
    J. P. Holdren (1978). Fusion energy in context: Its fitness for the long term.Science,200, 170 (legend to Table 2).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • Dieter Eckhartt
    • 1
  1. 1.GarchingGermany

Personalised recommendations