Evolutionary Ecology

, Volume 4, Issue 3, pp 261–272 | Cite as

Reversed sexual size dimorphism in microtines: Are females larger than males or are males smaller than females?

  • Søren Bondrup-Nielsen
  • Rolf Anker Ims
Papers

Summary

We analysed sexual size dimorphism for 21 populations of microtine rodents. Female to male size ratio varied considerably among populations from females significantly larger than males (ratio=1.18) to males larger than females (ratio=0.78). In a multiple regression analysis female to male home range size ratio explained 94% of the total variation in body size dimorphism and was the only one of eight independent variables that was selected in a stepwise regression procedure. When females are the larger sex, males have home range sizes much larger than females. We suggest that the relationship between home range size ratio and body weight size dimorphism reflects different selection pressures on males and females in competition for resources and mates.

Keywords

Sexual selection sexual size dimorphism home range size mating system territoriality cost of locomotion Microtinae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitchinson, C. W. (1987a) Review of winter trophic relations of soricine shrews.Mammal Rev. 17, 1–24.Google Scholar
  2. Aitchinson, C. W. (1987b) Winter energy requirements of soricine shrews.Mammal Rev. 17, 25–38.Google Scholar
  3. Banfield, A. W. F. (1974)The mammals of Canada. pp. 438. Toronto: Univ. Toronto Press.Google Scholar
  4. Batzli, G. O. (1985) Nutrition. (R. H. Tamarin, ed.)Biology of New World Microtus. pp. 779–811. Sp. Publ. No. 8.Am. Soc. Mamm.Google Scholar
  5. Bergsted, B. (1966) Home range and movements of the rodent speciesClethrionomys glareolus (Schreber),Apodenus flavicolis (Melchoir) andApodemus sylvaticus (Linne) in southern Sweden.Oikos 17, 150–7.Google Scholar
  6. Bondrup-Nielsen, S. (1987) Demography ofClethrionomys gapperi in different habitats.Can. J. Zool. 65, 277–83.Google Scholar
  7. Bondrup-Nielsen, S. (in press). Food choice and diet of wood lemmings,Myopus schisticolor. Biol. J. Linn. Soc. Google Scholar
  8. Bondrup-Nielsen, S. and Karlsson, F. (1985) Movements and spatial patterns in populations ofClethrionomys species, A review.Ann Zool. Fennici 22, 385–92.Google Scholar
  9. Bondrup-Nielsen, S. and Ims, R. A. (1988) Demography during a population crash of the wood lemming,Myopus schisticolor.Can. J. Zool. 67, 2442–8.Google Scholar
  10. Bondrup-Nielsen, S., Ims, R. A., Fredriksson, R. and Fredga, K. (in press). Demography of the wood lemmingMyopus schisticolor Biol. J. Linn. Soc. Google Scholar
  11. Chitty, H. and Chitty, D. (1962) Body weight in relation to population phase inMicrotus agrestis. Symp. Theriologicum. Berno, 1962, pp. 77–86.Google Scholar
  12. Clutton-Brock, T. H. and Harvey, P. H. (1983) The functional significance of variation in body size among mammals. (J. K. Eisenberg and D. G. Kleiman, eds)Advances in the study of mammalian behavior. pp. 632–63. Spec. Publ. No. 7.Amer. Soc. Mamm.Google Scholar
  13. Clutton-Brock, T. H. and Iason, G. R. (1986) Sex ratio variation in mammals.Quart. Rev. Biol. 61, 339–74.PubMedGoogle Scholar
  14. Crawley, M. C. (1969) Movements and home-ranges ofClethrionomys glareolus Schreber andApodemus sylvaticus L. in north-east England.Oikos 20, 310–19.Google Scholar
  15. Davies, N. B. and Houston, A. I. (1984) Territory economics. (J. R. Krebs and N. B. Davies, eds)Behavioural Ecology, An evolutionary approach. pp. 148–69. Oxford: Blackwell Scientific Publications.Google Scholar
  16. Dewsbury, D. A., Baumgardner, D. J., Evans, R. L. and Webster, D. G. (1980) Sexual dimorphism for body mass in 13 taxa of muroid rodents under laboratory conditions.J. Mamm. 61, 146–9.Google Scholar
  17. Eisenberg, J. F. (1981)The mammalian radiation,. Chicago: The University of Chicago Press.Google Scholar
  18. Fuller, W. A. (1985)Clethrionomys gapperi, Is there a peak syndrome?Ann. Zool. Fennici 22, 243–55.Google Scholar
  19. Getz, L. L. (1985) Habitats. (R. H. Tamarin, ed.)Biology of New World Microtus. pp. 286–309. Sp. Publ. No. 8.Am. Soc. Mamm. Google Scholar
  20. Grodzinski, W. (1985) Ecological energetics of bank voles and wood mice (J. R. Flowerdew, J. Gurnell and J. H. W. Gipps, eds)The ecology of woodland rodents, bank voles and wood mice. pp. 169–92.Symp. Zool. Soc. Lond. No. 55, London.Google Scholar
  21. Hansson, L. (1985)Clethrionomys food, generic, specific and regional characteristics.Ann. Zool. Fennici 22, 315–18.Google Scholar
  22. Healing, T. D. (1984) Factors affecting the population dynamics of the Skomer vole.Clethrionomys glareolus skomerensis. Unpubl Ph.D. thesis, London University.Google Scholar
  23. Heske, E. J. (1987) Spatial structuring and dispersal in a high density population of the California voleMicrotus californicus.Holarct Ecol. 10, 137–48.Google Scholar
  24. Ims, R. A. (1987a) Responses in spatial organization and behaviour to manipulation of the food resource in the voleClethrionomys rufocanus.J. Anim. Ecol. 56, 585–96.Google Scholar
  25. Ims, R. A. (1987b) Determinants of competitive success inClethrionomys rufocanus.Ecology 68, 1812–18.Google Scholar
  26. Ims, R. A. (1987c) Male spacing systems in microtine rodents.Am. Nat. 130, 475–84.Google Scholar
  27. Ims, R. A. (1988) Spatial clumping of sexually receptive females induces space sharing among male voles.Nature 335, 541–3.PubMedGoogle Scholar
  28. Ims, R. A. (1990) Mate detection success of maleClethrionomys rufocanus in relation to the spatial distribution of sexually receptive females.Evol. Ecol. 4, 57–61.Google Scholar
  29. Ims, R. A., Bondrup-Nielsen, S. and Stenseth, N. C. (1988) Temporal patterns of breeding events in small rodent populations.Oikos 52, 178–85.Google Scholar
  30. Iverson, S. L. and Turner, B. N. (1976) Small mammal radioecology, natural reproductive patterns of seven species.Atomic Energy of Canada Report. Whiteshell Nuclear Research Establishment, Pinawa, Manitoba, AECL-5393, 53 pp.Google Scholar
  31. Kalela, O. and Oksala, T. (1966) Sex ratio in the wood lemmingMyopus schisticolor (Lilljeb.), in nature and captivity.Annales Universitatis Turkuensis II. Biologica-Geographica 37, 5–24.Google Scholar
  32. Keller, B. L. (1985) Reproductive patterns. (R. H. Tamarin, ed.)Biology of New World Microtus. pp. 725–811. Sp. Publ. No. 8.Am. Soc. Mamm.Google Scholar
  33. Kleiman, D. G. (1977) Monogamy in mammals.Quart. Rev. Biol. 52, 39–69.PubMedGoogle Scholar
  34. Koshkina, T. V. (1961) Nye data om lemmen (Lemmus lemmus) næringsvaner.Bull. Mosk. Obsch. Ispyt. Prirody. Otd. Biol. Vol. 66(6). Translated to Norwegian from Russian by Jadwiga Weber.Google Scholar
  35. Lindstedt, S. L., Miller, B. J. and Buskirk, S. W. (1986) Home range, time and body size in mammals.Ecology 67, 413–18.Google Scholar
  36. Madison, D. M. (1985) Activity rhythms and spacing. (R. H. Tamarin, ed.)Biology of New World Microtus. pp. 373–419. Sp. Publ. No. 8.Am. Soc. Mamm. Google Scholar
  37. Myllymäki, A. (1977) Demographic mechanisms in the fluctuating populations of the field voleMicrotus agrestis.Oikos 29, 468–93.Google Scholar
  38. Ostfeld, R. S. (1985) Limiting resources and territoriality in microtine rodents.Am. Nat. 126, 1–15.Google Scholar
  39. Ostfeld, R. S. (1986) Territoriality and mating systems of California voles.J. Anim. Ecol. 55, 691–706.Google Scholar
  40. Peters, R. H. (1983)The ecological implications of body size. Cambridge: Cambridge University Press.Google Scholar
  41. Pucek, M. (1983) Habitat of the population (K. Petrusewicz, ed.)Ecology of the bank vole.Acta Theriol. pp. 31–9., vol. 28. Suppl. 1.Google Scholar
  42. Ralls, K. (1976) Mammals in which females are larger than males.Quart. Rev. Biol. 51, 245–76.PubMedGoogle Scholar
  43. Ralls, K. (1977) Sexual dimorphism in mammals: avian models and unanswered questions.Am. Nat. 111, 917–38.Google Scholar
  44. Reiss, M. J. (1986) Sexual dimorphism in body size: are large species more dimorphic?J. Theor. Biol. 121, 163–72.Google Scholar
  45. Reiss, M. (1988) Scaling of home range size, body size, metabolic needs and ecology.Trends Ecol. Evol. 3, 85–6.Google Scholar
  46. Rose, R. K. and Gaines, M. S. (1978) The reproductive cycle ofMicrotus ochrogaster in eastern Kansas.Ecol. Monogr. 48, 21–42.Google Scholar
  47. Shine, R. (1988) The evolution of large body size in females: a critique of Darwin's ‘fecundity advantage’ model.Am. Nat. 131, 124–31.Google Scholar
  48. Stenseth, N. C. and Framstad, E. (1980) Reproductive effort and optimal reproductive rates in small rodents.Oikos 34, 23–34.Google Scholar
  49. Stenseth, N. C., Gustafsson, T. O., Hansson, L. and Ugland, K. I. (1985) On the evolution of reproductive rates in microtine rodents.Ecology 66, 1795–808.Google Scholar
  50. Taitt, M. J. and Krebs, C. J. (1985) Population dynamics and cycles. (R. H. Tamarin, ed.)Biology of New World Microtus. pp. 567–620. Sp. Publ. No. 8.Am. Soc. Mamm. Google Scholar
  51. Tast, J. (1966) The root vole,Microtus oeconomus (Pallas), as an inhabitant of seasonally flooded land.Ann. Zool. Fenn. 3, 127–71.Google Scholar
  52. Viitala, J. (1977) Social organization in cyclic subaretic populations of the volesClethrionomys rufocanus (Sund.) andMicrotus agrestis (L.).Ann. Zool. Fenn. 14, 53–93.Google Scholar
  53. Viitala, J. (1987) Social organization ofClethrionomys rutilus (Pall.) at Kilpisjärvi, Finnish Lapland.Ann. Zool. Fenn. 24, 267–73.Google Scholar
  54. Wrangham, R. W. (1980) An ecological model of female-bonded primate groups.Behav. 75, 262–300.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • Søren Bondrup-Nielsen
    • 1
  • Rolf Anker Ims
    • 1
  1. 1.Department of Biology, Division of ZoologyUniversity of OsloOslo 3Norway

Personalised recommendations