Evolutionary Ecology

, Volume 4, Issue 3, pp 185–219 | Cite as

The evolution of bird-dispersed pines

  • Diana F. Tomback
  • Yan B. Linhart

Summary

Twenty of approximately 100 species of pines (Pinus spp.) have wingless seeds, and 19 of these are in the subgenusStrobus. Eight of the wingless-seedStrobus pines are known to be dispersed by seed-storing corvids, particularly the nutcrackers (Nucifraga spp.), and the other 11 are presumed to be. The principal consequences of these nearly obligate bird-pine mutualisms include tree clustering and a population structure that differs from that of wind-dispersed pines. The wingless-seedStrobus pines in general are typified by ranges that include xeric conditions and/or high elevations, and large seeds, which are considered to be adaptive under either xeric or competitive conditions. The proposed evolutionary scenario for bird dependency begins with the distribution of ancestralStrobus pines into high elevation or semi-desert environments, sympatric with one or more seed-storing corvid forms, and an increase in seed size. We propose that dependency on birds for seed dispersal has occurred primarily in subgenusStrobus, becauseStrobus pines tend more towards winglessness and increased seed size in stressful environments than doPinus pines. Seed winglessness and other bird-pine traits probably arose from a combination of genetic drift in small populations and selection by corvids.

Keywords

Pines Pinus Pinaceae subgenusStrobus subgenusPinus subsectionCembrae subsectionCembroides subsectionGerardianae subsectionStrobi Pinus cembra Pinus albicaulis Pinus flexilis Pinus edulis Pinus monophylla Corvidae nutcrackers jays Nucifraga columbiana Nucifraga caryocatactes seed caching seed dispersal mutualism coevolution winged seed wingless seed wind-dispersed bird-dispersed tree clusters biogeography directional selection reciprocal selection genetic drift inbreeding small populations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, H. G. (1961) White pine seed consumption by small mammals.J. Forestry 59, 197–210.Google Scholar
  2. Abbott, H. G. and Quink, T. F. (1970). Ecology of eastern white pine caches made by small forest mammals.Ecology 51, 271–8.Google Scholar
  3. Alexander, R. D. and Borgia, G. (1978) Group selection, altruism, and the levels of organization of life.Annu. Rev. Ecol. Syst. 9, 449–74.Google Scholar
  4. Ali, S. and Ripley, S. D. (1972).Handbook of the Birds of India and Pakistan. Oxford University Press, Bombay, India.Google Scholar
  5. Alvin, K. L. (1960) Further conifers of the Pinaceae from the Wealden Formation of Belgium.Mem. Inst. R. Sci. Nat. Belg. 146, 1–39.Google Scholar
  6. American Ornithologists' Union (1983)Check-list of North American Birds. American Ornithologists' Union, Allen Press, Inc., Lawrence, Kansas.Google Scholar
  7. Andresen, J. W. (1966). A multivariate analysis of thePinus chiapensis-monticola-strobus phylad.Rhodora 68, 1–24.Google Scholar
  8. Arno, S. F. (1986) Whitebark pine cone crops — a diminishing source of wildlife food?Western J. App. Forestry 1, 92–4.Google Scholar
  9. Arno, S. F. and Hoff, R. J. (1989) Silvics of whitebark pine (Pinus albicaulis). Gen. Tech. Rep. INT-253. U.S.D.A. Forest Service, Intermountain Forest and Range Exper. Sta., Missoula, Montana.Google Scholar
  10. Bailey, D. K. (1970) Phytogeography and taxonomy ofPinus subsectionBalfourianae.Ann. Missouri Bot. Gard. 57, 210–49.Google Scholar
  11. Bailey, D. K. and Hawksworth, F. G. (1979) Pinyons of the Chihuahua Desert region.Phytologie 44, 129–33.Google Scholar
  12. Baker, H. G. (1972) Seed weight in relation to environmental conditions in California.Ecology 53, 997–1010.Google Scholar
  13. Balda, R. P. (1980a) Recovery of cached seeds by a captiveNucifraga caryocatactes.Z. Tierpsychol. 52, 331–46.Google Scholar
  14. Balda, R. P. (1980b) Are seed caching systems coevolved? InProceedings XVII Congressus Internationalis Ornithologici, pp. 1185–91.Google Scholar
  15. Balda, R. P. and Bateman, G. C. (1971) Flocking and annual cycle of the pinon jay.Condor 73, 287–302.Google Scholar
  16. Balda, R. P. and Kamil, A. C. (1989). A comparative study of cache recovery by three corvid species.Anim. Behav. 38, 486–95.Google Scholar
  17. Bibikov, D. I. (1948). On the ecology of the nutcracker.Trudy Pechorskogo-Ilychskogo Gosudarstvennogo Zapovednika IV, 89–112 (in Russian, translated by L. Kelso).Google Scholar
  18. Bock, W. J., Balda, R. P. and Vander Wall, S. B. (1973) Morphology of the sublingual pouch and tongue musculature in Clark's Nutcracker.Auk 90, 91–519.Google Scholar
  19. Borchert, M. (1985) Serotiny and cone-habit variation in populations ofPinus coulteri (Pinaceae) in the southern coast ranges of California.Madrono 32, 29–48.Google Scholar
  20. Bormann, F. H. (1966) The structure, function and ecological significance of root grafts inPinus strobus L.Ecol. Monogr. 36, 1–26.Google Scholar
  21. Bossema, I. (1979) Jays and oaks: an eco-ethological study of a symbiosis.Behaviour 70, 1–117.Google Scholar
  22. Brussard, P. F. (1990) The role of genetic diversity in whitebark pine conservation. InProceedings—Whitebark Pine Ecosystems: Ecology and Management of a High Mountain Resource. U.S.D.A. Forest Service, Intermountain For. and Range Exper. Sta., Ogden, Utah, in press.Google Scholar
  23. Bullock, S. H. (1981) Aggregations ofPrunus ilicifolia (Rosaceae) during dispersal and its effect on survival and growth.Madrono 28, 94–5.Google Scholar
  24. Bunch, K. G., and Tomback, D. F. (1986) Bolus recovery by gray jays: an experimental analysis.Anim. Behav. 34, 754–62.Google Scholar
  25. Chiarello, N. J., Hickman, J. and Mooney, H. (1982) Endomycorrhizal role for interspecific transfer of phosphorus in a community of annual plants.Science 217, 841–3.PubMedGoogle Scholar
  26. Clausen, J. (1965) Population studies of alpine and subalpine races of conifers and willows in the California High Sierra Nevada.Evolution 19, 56–68.Google Scholar
  27. Conrads, K. and Balda, R. P. (1979) Überwinterungschancen Sibirischer Tannenhäher (Nucifraga caryocatactes macrorhynchos) im Invasionsgebiet.Bericht des Naturwissenschaftlichen Vereins Bielefeld 115–37.Google Scholar
  28. Critchfield, W. B. (1977) Hybridization of foxtail and bristlecone pines.Madrono 24, 193–212.Google Scholar
  29. Critchfield, W. B. (1986) Hybridization and classification of the white pines (Pinus sectionStrobus).Taxon 35, 647–56.Google Scholar
  30. Critchfield, W. B. and Little, Jr., E. L. (1966)Geographic Distribution of the Pines of the World. U.S. Dept. of Agric., Misc. Publ. 991, Washington, DC.Google Scholar
  31. Crocq, C. (1978) Écologie du Casse-noix (Nucifraga caryocatactes L.) dans les Alpes françaises du sud: Ses relations avec l'Arolle (Pinus cembra L.). Dissertation, L'Université de Droit D'Économie et de Sciences D'Aix-Marseille, 189 pp.Google Scholar
  32. Daly, C. and Shankman, D. (1985) Seedling establishment by conifers above tree limit on Niwot Ridge, Front Range, Colorado, U.S.A.Arctic and Alpine Res. 17, 389–400.Google Scholar
  33. Darley-Hill, S. and Johnson, W. C. (1981) Acorn dispersal by the blue jay (Cyanocitta cristata).Oecologia 50, 231–2.Google Scholar
  34. Davis, J. and Williams, L. (1957) Irruptions of the Clark Nutcracker in California.Condor 59, 297–307.Google Scholar
  35. Davis, J. and Williams, L. (1964) The 1961 irruption of the Clark's Nutcracker in California.Wilson Bulletin 76, 10–18.Google Scholar
  36. Davis, M. L. (1981) Quaternary history and the stability of forest communities. InForest Succession: Concepts and Applications (D. C. West, H. H. Shugart, and D. B. Botkin, eds) pp. 132–53. Springer-Verlag, New York.Google Scholar
  37. Davis, M. B., Woods, K. D., Webb, S. L. and Futyma, R. P. (1986) Dispersal vs. climate: expansion ofFagus andTsuga into the Upper Great Lakes region.Vegetatio 67, 93–103.Google Scholar
  38. Dement'ev, G. P., Gladkov, N. A., Sudilovskaya, A. M., et al. (1970)Birds of the Soviet Union, Vol. V. Israel Program for Scientific Translations, Smithsonian Inst., Washington, DC.Google Scholar
  39. Elmberg, J. and Mo, A. (1984) Smalnäbbad nötkråkaNucifraga caryocatactes macrorhynchos — nyetablerad häckfågel i Västerbotten.Vår Fågelvärld 43, 193–7.Google Scholar
  40. Everett, R. L., Koniak, S. and Budy, J. D. (1986) Pinyon seedling distribution among soil surface microsites. U.S.D.A. Research Paper INT 363.Google Scholar
  41. Feduccia, A. (1980)The Age of Birds. Harvard University Press, Cambridge, Mass.Google Scholar
  42. Fisher, R. M. and Myres, M. T. (1980) A review of factors influencing extralimital occurrences of Clark's Nutcracker in Canada.Can. Field-Nat. 94, 43–51.Google Scholar
  43. Foster, F. A. and Janson, C. H. (1985) The relationship between seed size and establishment conditions in tropical woody plants.Ecology 63, 773–80.Google Scholar
  44. Furnier, G. R., Knowles, P., Clyde, M. A. and Dancik, B. P. (1987) Effects of avian seed dispersal on the genetic structure of whitebark pine populations.Evolution 41, 607–12.Google Scholar
  45. Futuyma, D. J. (1986)Evolutionary Biology. Sinauer Assoc., Sunderland, Mass.Google Scholar
  46. Giuntoli, M. and Mewaldt, L. R. (1978) Stomach contents of Clark's Nutcracker collected in western Montana.Auk 95, 595–8.Google Scholar
  47. Goodwin, D. (1976).Crows of the World. Comstock Publ. Assoc., Ithaca, NY.Google Scholar
  48. Gould, S. J. (1980) Is a new and general theory of evolution emerging?Paleobiology 6, 119–30.Google Scholar
  49. Gould, S. J. (1982) Darwinism and the expansion of evolutionary theory.Science 216, 380–7.PubMedGoogle Scholar
  50. Gould, S. J. and Lewontin, R. C. (1979) The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme.Proc. Royal Soc. London B205, 581–98.Google Scholar
  51. Govindaraju, D. R. (1988) Life histories, neighbourhood sizes, and variance structure in some North American conifers.Biol. J. Linnean Soc. 35, 69–78.Google Scholar
  52. Graham, B. F. (1959) Root grafts in eastern white pines,Pinus strobus L.: their occurrence and ecological implication. Ph.D. diss. Duke University. Durham, North Carolina.Google Scholar
  53. Grime, J. P. (1979).Plant Strategies and Vegetation Processes. John Wiley and Sons, Chichester, Great Britain.Google Scholar
  54. Grinnell, J. (1936) Up-hill planters.Condor 38, 80–2.Google Scholar
  55. Hamilton, W. D. (1964) The genetical evolution of social behaviourI. J. Theoret. Biol. 7, 1–16.Google Scholar
  56. Harper, J. L. (1977)Population Biology of Plants. Academic Press, New York.Google Scholar
  57. Harper J. L., Lovell, P. M. and Moore, K. G. (1970) The shapes and sizes of seeds.Annu. Rev. Ecol. Syst. 1, 327–56.Google Scholar
  58. Hayashida, M. (1989a) Seed dispersal by red squirrels and subsequent establishment of Korean pine.For. Ecol. Manage. 28, 115–29.Google Scholar
  59. Hayashida, M. (1989b) Seed dispersal and regeneration patterns ofPinus parviflora var.pentaphylla on Mt. Apoi in Hokkaido.Research Bulletins of the College Experimental Forests, Faculty of Agriculture, Hokkaido University (Sapporo, Japan)46, 177–90.Google Scholar
  60. Heinzel, H., Fritter, R. and Parslow, J. (1972)The Birds of Britain and Europe. Collins, London.Google Scholar
  61. Herrera, C. M. (1986) Vertebrate-dispersed plants: why they don't behave the way they should. InFrugivores and Seed Dispersal (A. Estrada and T. H. Fleming, eds) pp. 1–18. Dr. Junk Publishers, Dordrecht.Google Scholar
  62. Holtmeier, F.-K. (1966) Die ökologische Funktion des Tannenhähers in Zirben-Lärchenwald und an der Waldgrenze des Oberengadins.J. für Ornithol. 107, 337–45.Google Scholar
  63. Holtmeier, F.-K. (1986) Über Bauminseln (Kollektive) an der klimatschen Waldgrenze — unter besonderer Berücksichtigung von Beobachtungen in verschiedenen Hochgebirgen Nordamerikas.Wetter und Leben 38, 121–39.Google Scholar
  64. Howard, W. E. and Cole, R. E. (1967) Olfaction in seed detection by deer mice.J. Mammal. 48, 147–50.Google Scholar
  65. Howard, W. E., Marsh, R. E. and Cole, R. E. (1968). Food detection by deer mice using olfactory rather than visual cues.Anim. Behav. 16, 13–17.PubMedGoogle Scholar
  66. Howe, H. F. and Smallwood, J. (1982) Ecology of seed dispersal.Annu. Rev. Ecol. Syst. 13, 201–28.Google Scholar
  67. Howe, H. F. (1984) Constraints on the evolution of mutualisms.Am. Nat. 123, 764–77.Google Scholar
  68. Hutchins, H. E. and Lanner, R. M. (1982) The central role of Clark's Nutcracker in the dispersal and establishment of whitebark pine.Oecologia 55, 192–201.Google Scholar
  69. James, P. C. and Verbeek, N. A. M. (1985) Clam storage in a Northwestern Crow (Corvus caurinus): dispersion and sequencing.Can. J. Zool. 63, 857–60.Google Scholar
  70. Jameson, E. W., Jr. (1952) Food of deer mice,Peromyscus maniculatus andP. boylei, in the northern Sierra Nevada, California.J. Mammalogy 33, 50–60.Google Scholar
  71. Janzen, D. H. (1971) Seed predation by animals.Annu. Rev. Ecol. Syst. 2, 465–92.Google Scholar
  72. Janzen, D. H. (1980) When is it coevolution?Evolution 34, 611–12.Google Scholar
  73. Janzen, D. H. (1985) The natural history of mutualisms. InThe Biology of Mutualism: Ecology and Evolution (D. H. Boucher, ed.) pp. 40–99. Croom Helm, London.Google Scholar
  74. Jensen, T. S., (1984) Habitat distribution, home range, and movements of rodents in mature forest and reforestationsActa Zool. Fennica 171, 305–7.Google Scholar
  75. Johnson, L. S., Marzluff, J. M. and Balda, R. P. (1987) Handling of pinyon pine seed by the Clark's Nutcracker.Condor 89, 117–25.Google Scholar
  76. Johnson, W. C. and Adkisson, C. S. (1985) Dispersal of beech nuts by blue jays in fragmented landscapes.Am. Midl. Natur. 113, 319–24.Google Scholar
  77. Johnson, W. C. and Webb, T., III (1989) The role of blue jays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America.J. Biogeog. 16, 561–71.Google Scholar
  78. Kamil, A. C. and Balda, R. P. (1985) Cache recovery and spatial memory in Clark's Nutcrackers (Nucifraga columbiana).J Exper. Psychol.: Anim. Behav. Processes 11, 95–111.Google Scholar
  79. Keeley, J. E. (1988) Population variation in root grafting and a hypothesis.Oikos 52, 364–6.Google Scholar
  80. Kishchinskii, A. A. (1968) Kedrovka-Nucifraga caryocatactes kamtschatkensis Barr.-Hamm. andN. c. macrorhynchos Brehm. InPtitsy Kolymskogo Nagorya, pp. 100–9. (translated from Russian by L. Kelso).Google Scholar
  81. Knowles, P. (1984) Genetic variability among and within closely spaced populations of lodgepole pine.Can. J. Genet. Cytol. 26, 177–84.Google Scholar
  82. Komarov, V. L. (ed.) (1968)Flora of the U.S.S.R.. Translated from Russian. Israel Program for Scientific Translations, Smithsonian Institution, Washington, DC.Google Scholar
  83. Kondratov, A. V. (1953) On the restoration of the Siberian cedar-pine in the wild by nest (cluster) sowing.Agrobiologiia 3, 161–4 (in Russian).Google Scholar
  84. Krugman, S. L. and Jenkinson, J. L. (1974)Pinus. InSeeds of Woody Plants in the United States, pp. 598–638. U.S. Agriculture Handbook, No. 450.Google Scholar
  85. Kuznetsov, N. I. (1959) On the ecology of the nutcracker in the mid-Urals.Byull. MOIP, Otdel. Biol. 64, 132–3. (translated from Russian by L. Kelso).Google Scholar
  86. Lande, R. (1985) Expected time for random genetic drift of a population between stable phenotypic states.Proc. Natl. Acad. Sci. USA 82, 7641–5.PubMedGoogle Scholar
  87. Lande, R. (1986) The dynamics of peak shifts and the pattern of morphological evolution.Paleobiology 12, 343–54.Google Scholar
  88. Lanner, R. M. (1974) A new pine from Baja California and the hybrid origin ofPinus quadrifolia.Southwest. Nat. 19, 75–95.Google Scholar
  89. Lanner, R. M. (1980) Avian seed dispersal as a factor in the ecology and evolution of limber and whitebark pines. InProceedings of Sixth North American Forest Biology Workshop, pp. 15–48. University of Alberta, Edmonton, Alberta.Google Scholar
  90. Lanner, R. M. (1982) Adaptations of whitebark pine for seed dispersal by Clark's Nutcracker.Can. J. For. Res. 12, 391–402.Google Scholar
  91. Lanner, R. M. (1988) Dependence of Great Basin bristlecone pine on Clark's nuteracker for regeneration at high elevations.Arctic and Alpine Research 20, 358–62.Google Scholar
  92. Lanner, R. M., Hutchins, H. H. and Lanner, H. A. (1984) Bristlecone pine and Clark's Nutcracker: probable interaction in the White Mountains, California.Great Basin Naturalist 44, 357–60.Google Scholar
  93. Lanner, R. M. and Vander Wall, S. B. (1980) Dispersal of limber pine seed by Clark's Nutcracker.J. Forestry 78, 637–9.Google Scholar
  94. LaRue, C. D. (1934) Root grafting trees.Am. J. Bot. 21, 121–6.Google Scholar
  95. LaRue, C. D. (1952) Root grafting in tropical trees.Science 115, 296.Google Scholar
  96. Lescourret, F. and Genard, M. (1986) Consommation des graines de pin a crochets (Pinus uncinata Miller ex Mirbel) par les petits vertébrés en Neouvielle (Hautes-Pyrénées): approche quantitative et variation spatiale.Bull. Ecol. 17, 11–19.Google Scholar
  97. Levin, D. A. and Kerster, H. W. (1974) Gene flow in seed plants.Evol. Biol. 7, 139–220.Google Scholar
  98. Ligon, J. D. (1978) Reproductive interdependence of Pinon Jays and pinon pines.Ecol. Monogr. 48, 111–26.Google Scholar
  99. Linhart, Y. B. (1989) Interactions between genetic and ecological patchiness in forest trees and their dependent species. InEvolutionary Ecology of Plants (J. E. Bock and Y. B. Linhart, eds) pp. 1–31. Westview Press, Bouldet, Colorado.Google Scholar
  100. Linhart, Y. B., Mitton J. B., Sturgeon K. B., and Davis, M. L. (1981) Genetic variation in space and time in a population of ponderosa pine.Heredity 46, 407–26.Google Scholar
  101. Linhart, Y. B. and Tomback, D. F. (1985) Seed dispersal by nutcrackers causes multi-trunk growth form in pines.Oecologia 67, 107–10.Google Scholar
  102. Mastrogiuseppe, R. J. and Mastrogiuseppe, J. D. (1980) A study ofPinus balfouriana Grev. & Balf. (Pinaceae).System. Bot. 5, 86–104.Google Scholar
  103. Mattes, H. (1978)Der Tannenhäher (Nucifraga caryocatactes L.) im Engadin: Studien zu seiner Ökologie und Funktion im Arvenwald (Pinus cembra L.). Münsterische Geographische Arbeiten, Heft 2. Ferdinand Schoningh, Paderborn.Google Scholar
  104. Mattes, H. (1982)Die Lebensgemeinschaft von Tannenhäher und Arve. Swiss Fed. Inst. of Forestry Res., Birmensdorf, Switzerland.Google Scholar
  105. Mattes, H. (1985) The role of animals in cembran pine forest regeneration. InEstablishment and Tending of Subalpine Forest: Research and Management (H. Turner and W. Tranquilini, eds) pp. 197–205. Swiss Fed. Inst. of Forestry Res., Birmensdorf.Google Scholar
  106. Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., Lande, R., Raup, D. and Wolpert, L. (1985) Developmental constraints and evolution.Quart. Rev. Biol. 60, 265–87.Google Scholar
  107. Mayr, E. (1963)Animal Species and Evolution. Belknap Press, Cambridge, Mass.Google Scholar
  108. McCaughey, W. W., Schmidt, W. C. and Shearer, R. C. (1986) Seed-dispersal characteristics of conifers in the Inland Mountain West. InProceedings — Conifer Tree Seed in the Inland Mountain West Symposium, p. 50–62. U.S.D.A. Forest Service, INT-203.Google Scholar
  109. McCune, B. (1988) Ecological diversity in North American pines.Amer. J. Botany 75, 353–68.Google Scholar
  110. McKeever, S. (1964) The biology of the golden-mantled ground squirrel,Citellus lateralis.Ecol. Monogr. 34, 383–401.Google Scholar
  111. Mezhenny, A. A. (1961) Food competitors, enemies and diseases. InEcology and Economics of the Yakut Squirrel (O. V. Egorov, ed.) pp. 124–9. Akademiya Nauk, Moscow. (translated from Russian by L. Kelso)Google Scholar
  112. Mezhenny, A. A. (1964) Biology of the nuteracker (Nucifraga caryocatactes macrorhynchus) in south Yakutia.Zool. Zhurnal 43, 1679–87. (in Russian)Google Scholar
  113. Miller, Jr., C. N. and Malinky, J. M. (1986). Seed cones ofPinus from the late Cretaceous of New Jersey, U.S.A.Rev. Paleobotany and Palynology 46, 257–72.Google Scholar
  114. Mirov, N. T. (1967)The Genus Pinus. Ronald Press, New York.Google Scholar
  115. Newman, C. M., Cohen, J. E. and Kipnis, C. (1985) Neo-darwinian evolution implies punctuated equilibria.Nature 315, 400–1.Google Scholar
  116. Okitsu, S. and Ito, K. (1984) Vegetation dynamics of the Siberian dwarf pine (P. pumila Regel) in the Taisetsu mountain range of Hokkaido.Vegetatio 58, 105–13.Google Scholar
  117. Pivnik, S. A. (1960) Renewal of cedar-pine stlannik (Pinus pumila Rgl.) in plant communities of the Cislenan uplands. InProblemy Kedra. Trudy Po Lesnoe Khozyaistvo Sibiri, No. 6, 129. Publ. Sibirsk. Otdel. Akad. Nauk USSR. (in Russian).Google Scholar
  118. Portenko, L. A. (1948) Neck pouches in birds,Priroda 37, 50–4. (translated from Russian by L. Kelso).Google Scholar
  119. Puri, G. S. (1960)Indian Forest Ecology, Vol. I. Oxford Books and Stationery Co., New Delhi.Google Scholar
  120. Reed, R. M. (1976) Coniferous forest habitat types of the Wind River Mountains, Wyoming.Am. Midl. Nat. 95, 159–73.Google Scholar
  121. Reimers, N. F. (1953) The food of the nutcracker and its role in the dispersal of the cedar-pine in the mountains of Khamar-Daban. Lesnoe Khozyaistvo 1, 63–4. (translated from Russian by L. Kelso).Google Scholar
  122. Reimers, N. F. (1958) The reforestation of burns and forest tracts devastated by silkworms in the mountain cedar-pine taiga of Cisbaikal and the role of vertebrate animals in this process.Byull. Moip. Otdel. Biol. 63, 49–56. (in Russian).Google Scholar
  123. Reimers, N. F. (1959) Birds of the cedar-pine forests of south-central Siberia and their role in the life of the cedar-pine.Trudy Biologischeskogo Instituta, Sibirskogo Otdelenie Akad. Nauk, USSR 5, 121–66. (translated from Russian by L. Kelso).Google Scholar
  124. Reimers, N. F. and Smirnov, A. V. (1953) Is there a necessity for sowing cedar-pines in burns and silkwormdevastated areas of the cedar-pine forests of southeastern Cisbaikal?Lesnoe Khozyaistvo 5, 67–8. (in Russian).Google Scholar
  125. Robbins, C. S., Bruun, B. and Zim, H. S. (1966)Birds of North America. Golden Press, New York.Google Scholar
  126. Rothstein, S. I. and Barash, D. P. (1983) Gene conflicts and the concepts of outlaw and sheriff alleles.J. Social Biol. Struct. 6, 367–79.Google Scholar
  127. Salisbury, E. J. (1942)The Reproductive Capacity of Plants. Bell, London.Google Scholar
  128. Schuster, W. S. F. and Mitton, J. B. MS. Discerning individuality: genetic analyses of multi-trunk trees and fused clusters of trees in limber pine.Google Scholar
  129. Schvarts, S. S. (1977)The Evolutionary Ecology of Animals. Translated and edited by A. E. Gill. Consultants Bureau, New York.Google Scholar
  130. Shea, K. L. and Grant, M. C. (1986) Clonal growth in spire-shaped Engelmann spruce and subalpine fir trees.Can. J. Bot. 64, 255–61.Google Scholar
  131. Sibley, C. G. and Ahlquist, J. E. (1987) Reconstructing bird phylogeny by comparing DNAs.Sci. Amer. 254, 82–92.Google Scholar
  132. Siggins, H. W. (1933) Distribution and rate of fall of conifer seeds.J. Agric. Res. 47, 119–28.Google Scholar
  133. Smith, C. C. (1970) Coevolution of pine squirrels (Tamiasciurus) and conifers.Ecol. Monogr. 49, 349–71.Google Scholar
  134. Smith, C. C. (1981) The facultative adjustment of sex ratio in lodgepole pine.Am. Nat. 118, 297–305.Google Scholar
  135. Smith, C. C. and Balda, R. P. (1979) Competition among insects, birds, and mammals for conifer seeds.Am. Zool. 19, 1065–83.Google Scholar
  136. Smith, C. F. and Aldous, S. E. (1947) The influence of mammals and birds in retarding artificial and natural reseeding of coniferous forests in the United States.J. For. 45, 361–9.Google Scholar
  137. Smith, R. L. (1986)Elements of ecology. Harper and Row, New York.Google Scholar
  138. Sorensen, F. C. (1970) Self-fertility of a central Oregon source of ponderosa pine. Pacific N.W. Forest and Range Experiment Station. U.S.D.A. Forest Service Research Paper PNW-109.Google Scholar
  139. Sorensen, F. C. (1982) The roles of polyembryony and embryo viability in the genetic system of conifers.Evolution 36, 725–33.Google Scholar
  140. Sorensen, F. C. and Miles, F. S. (1974) Self-pollination effects on Douglas-fir and ponderosa pine seeds and seedlings.Silvae Genet. 23, 135–8.Google Scholar
  141. Squillace, A. E. (1957) Variations in cone properties, seed yield and seed weight in western white pine when pollination is controlled. School of Forestry, Montana State University, Bull. 5.Google Scholar
  142. Stern, K. and Roche, L. (1974)Genetics of Forest Ecosystems. Springer-Verlag, New York.Google Scholar
  143. Strauss, S. H. and Ledig, F. T. (1985) Seedling architecture and life history evolution in pines.Am. Nat. 125, 702–15.Google Scholar
  144. Sudworth, G. B. (1908)Forest Trees of the Pacific Slope. U.S. Dept. of Agriculture.Google Scholar
  145. Sund, S. K. (1988) Post-fire regeneration ofPinus albicaulis in western Montana: patterns of occurrence and site characteristics. Thesis, Department of Biology. University of Colorado at Denver.Google Scholar
  146. Sund, S. K., Tomback, D. F. and Hoffmann, L. A. MS. Post-fire regeneration ofPinus albicaulis in western Montana: patterns of occurrence and site characteristics.Google Scholar
  147. Swanberg, P. O. (1951) Food storage, territory, and song in the Thick-billed Nuteracker.Proc. Xth Internatl. Ornith. Congr., pp. 545–54.Google Scholar
  148. Tevis, L., Jr. (1952) Autumn foods of chipmunks and golden-mantled ground squirrels in the northern Sierra Nevada.J. Mammal. 33, 198–205.Google Scholar
  149. Tevis, L., Jr. (1953) Effect of vertebrate animals on seed crop of sugar pine.J. Wildlife Management 17, 128–31.Google Scholar
  150. Tomback, D. F. (1977) The behavioral ecology of the Clark's Nutcracker (Nucifraga columbiana) in the eastern Sierra Nevada. Ph.D. diss., University of California at Santa Barbara.Google Scholar
  151. Tomback, D. F. (1978) Foraging strategies of Clark's Nuteracker.Living Bird 16, 123–61.Google Scholar
  152. Tomback, D. F. (1980) How nutcrackers find their seed stores.Condor 82, 10–19.Google Scholar
  153. Tomback, D. F. (1981) Notes on cones and vertebrate-mediated seed dispersal ofPinus albicaulis (Pinaceae).Madroño 28, 91–4.Google Scholar
  154. Tomback, D. F. (1982) Dispersal of whitebark pine seeds by Clark's Nutcracker: a mutualism hypothesis.J. Anim. Ecology 51, 451–67.Google Scholar
  155. Tomback, D. F. (1983) Nutcrackers and pines: coevolution or coadaptation? (M. H. Nitecki, ed.)Coevolution. Univ. of Chicago Press, Chicago, Illinois.Google Scholar
  156. Tomback, D. F. (1986) Post-fire regeneration of krummholz whitebark pine: a consequence of nuteracker seed caching.Madroño 33, 100–10.Google Scholar
  157. Tomback, D. F. (1988) Nutcracker-pine mutualisms: multi-trunk trees and seed size. InActa XIX Congressus Internationalis Ornithologici, Vol. 1, (H. Ouellet, ed.) pp. 518–27 University of Ottawa Press.Google Scholar
  158. Tomback, D. F. and Kramer, K. A. (1980) Limber pine seed harvest by Clark's Nuteracker in the Sierra Nevada: timing and foraging behavior.Condor 82, 467–8.Google Scholar
  159. Tomback, D. F. and Taylor, C. L. (1987) Tourist impact on Clark's nutcracker foraging activities in Rocky Mountain National Park. InWildlife Management and Habitats (F. Singer, ed.), pp. 158–72. National Park Service and George Wright Society, Washington, DC.Google Scholar
  160. Tomback, D. F. and Herrera, C. M. (1988) Introduction (to Plant-bird Mutualism symposium). InActa XIX Congressus Internationalis Ornithologici, Vol. 1 (H. Ouellet, ed.) p. 508. University of Ottawa Press.Google Scholar
  161. Tomback, D. F., Hoffmann, L. A. and Sund, S. K. (1990) Coevolution of whitebark pine and nutcrackers: implications for forest regeneration. InProceedings — Whitebark pine Ecosystems: Ecology and Management of a High Mountain Resource, U.S.D.A. Forest Service, Intermountain Forest and Range Exper. Sta., Ogden, Utah, in press.Google Scholar
  162. Tomback, D. F., Hoffmann, L. A. and Sund, S. K. (1990) MS. Post-fire regeneration ofPinus albicaulis in western Montana: comparisons with forest associates.Google Scholar
  163. Tranquillini, W. (1979)Physiological Ecology of the Alpine Timberline. Springer-Verlag, Berlin, Heidelberg.Google Scholar
  164. Turcek, F. J. (1966) Über das Wiederauffinden von im Boden versteckten Samen durch Tannen — und Eichelhäher.Waldhygiene 6, 215–17.Google Scholar
  165. Tureek, F. J. and Kelso, L. (1968) Ecological aspects of food transportation and storage in the Corvidac.Commun. Behav. Biol. Part A 1, 277–97.Google Scholar
  166. Vander Wall, S. B. (1982) An experimental analysis of cache recovery in Clark's nutcracker.Anim. Behav. 30, 84–94.Google Scholar
  167. Vander Wall, S. B. and Balda, R. P. (1977) Coadaptations of the Clark's Nutcracker and the piñon pine for efficient seed harvest and dispersal.Ecol. Monogr. 47, 89–111.Google Scholar
  168. Vander Wall, S. B. and Balda, R. P. (1982) Ecology and evolution of food-storage behavior in coniferseed-caching corvids.Z. Tierpsychol. 56, 217–42.Google Scholar
  169. Vander Wall, S. B. and Hutchins, H. E. (1983) Dependence of Clark's Nutcracker,Nucifraga columbiana, on conifer seeds during the postfledging period.Can. Field-Nat. 97, 208–14.Google Scholar
  170. Vander Wall, S. B., Hoffman, S. W. and Potts, W. K. (1981) Emigration behavior of Clark's Nutcracker.Condor 83, 162–70.Google Scholar
  171. Webb, S. L. (1987) Beech range extension and vegetation history: pollen stratigraphy of two Wisconsin lakes.Ecology 68, 1993–2005.Google Scholar
  172. West, N. E. (1968) Rodent-influenced establishment of ponderosa pine and bitterbrush seedlings in central Oregon.Ecology 109, 1009–11.Google Scholar
  173. Wheelwright, N. T. and Orians, G. H. (1982) Seed dispersal by animals: contrasts with pollen dispersal, problems of terminology, and constraints on coevolution.Am. Nat. 119, 402–13.Google Scholar
  174. Wilson, E. M. (1920) A phytogeographic sketch of the ligneous flora of Formosa.J. Arnold Arbor. 1, 25–41.Google Scholar
  175. Woodmansee, R. G. (1977) Clusters of limber pine trees: a hypothesis of plant-animal coaction.Southwest. Nat. 21, 511–17.Google Scholar
  176. Wright, J. (1976)Introduction to Forest Genetics. Academic Press, New York.Google Scholar
  177. Wright, S. (1982) Character change, speciation, and the higher taxa.Evolution 36, 427–43.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • Diana F. Tomback
    • 1
  • Yan B. Linhart
    • 2
  1. 1.Department of BiologyUniversity of Colorado at DenverDenverUSA
  2. 2.Department of Environmental, Population, and Organismic BiologyUniversity of Colorado at BoulderBoulderUSA

Personalised recommendations