Evolutionary Ecology

, Volume 5, Issue 3, pp 231–247

Seed size, pollination costs and angiosperm success

  • David Haig
  • Mark Westoby
Papers

Summary

Seed plants capture pollen before seeds are dispersed and abort unpollinated ovules. As a result, each seed is associated with an accessory cost that represents the costs of pollen capture and the costs of aborted ovules. Accessory costs may explain the minimum seed size among species, because these costs are likely to comprise a greater proportion of total reproductive allocation in species with smaller seeds. For very small propagules, the costs of pollination may not be worth the benefits, perhaps explaining the persistence of pteridophytic reproduction at small propagule sizes. The smallest angiosperm seeds are much smaller than the smallest gymnosperm seeds, both in the fossil record and in the modern flora. This suggests that angiosperms can produce pollinated ovules more cheaply than gymnosperms. Pollination becomes less efficient as a species decreases in abundance, and this loss of efficiency is greater for species with a higher accessory cost per seed. We propose that the greater reproductive efficiency of angiosperms when rare can explain why angiosperm-dominated floras were more speciose than the gymnosperm-dominated floras they replaced.

Keywords

Angiosperms pollination seed size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, H. N., Gensel, P. G. and Forbes, W. H. (1974) An apparently heterosporous plant from the Middle Devonian of New Brunswick.Palaeontology 17, 387–408.Google Scholar
  2. Arditti, J. (1979) Aspects of the physiology of orchids.Adv. Bot. Res. 7, 420–655.Google Scholar
  3. Audley-Charles, M. G. (1987) Dispersal of Gondwanaland: relevance to evolution of the angiosperms. InBiogeographical evolution of the Malay Archipelago (T. C. Whitmore, ed.) pp. 5–25. Oxford University Press, Oxford, UK.Google Scholar
  4. Bernstein, H., Byerley, H. C., Hopf, F. A. and Michod, R. E. (1985) Sex and the emergence of species.J. Theor. Biol. 117, 665–90.Google Scholar
  5. Bower, F. O. (1908)The Origin of a Land Flora. Macmillan, London, UK.Google Scholar
  6. Chaloner, W. G. (1967) Spores and land-plant evolution.Rev Palaeobot. Palyn. 1, 83–93.Google Scholar
  7. Chaloner, W. G. and Pettitt, J. M. (1987) The inevitable seed.Bull. Soc. Bot. Fr., Actual. Bot. 134, 39–49.Google Scholar
  8. Chaloner, W. G. and Sheerin, A. (1981) The evolution of reproductive strategies in early land plants. InEvolution Today. (G. G. E. Scudder and J. L. Reveal, eds),Proc. Second. Int. Congr. Syst. Evol. Biol. pp. 93–100.Google Scholar
  9. Cousens, M. I. (1988) Reproductive strategies of pteridophytes. InPlant Reproductive Biology (J. Lovett Doust and L. Lovett Doust, eds) pp. 307–28. Oxford University Press, Oxford, UK.Google Scholar
  10. Crane, P. R. (1985) Phylogenetic analysis of seed plants and the origin of angiosperms.Ann. Missouri Bot. Gard. 72, 716–93.Google Scholar
  11. Crepet, W. L. and Friis, E. M. (1987) The evolution of insect pollination in angiosperms. InThe origins of angiosperms and their biological consequences (E. M. Friis, W. G. Chaloner and P. R. Crane, eds), pp. 181–201. Cambridge University Press, Cambridge, UK.Google Scholar
  12. Doyle, J. A. (1978) Origin of angiosperms.Ann. Rev. Ecol. Syst. 9, 365–92.Google Scholar
  13. Doyle, J. A. and Donoghue, M. J. (1986) Seed plant phylogeny, and the origin of angiosperms: an experimental cladistic approach.Bot. Rev. 52, 321–431.Google Scholar
  14. Edwards, D. and Feehan, J. (1980) Records ofCooksonia-type sporangia from late Wenlock strata in Ireland.Nature 287, 41–2.Google Scholar
  15. Erdtman, G. and Sorsa, P. (1971)Pollen and Spore Morphology/Plant Taxonomy. Pteridophyta, (An Introduction to Palynology) Vol. 4. Almqvist and Wiksell, Stockholm, Sweden.Google Scholar
  16. Friis, E. M., Chaloner, W. G. and Crane, P. R. (1987) Introduction to angiosperms. InThe origins of angiosperms and their biological consequences. (E. M. Friis, W. G. Chaloner and P. R. Crane, eds), pp. 1–15. Cambridge University Press, Cambridge, UK.Google Scholar
  17. Furman, T. E. and Trappe, J. M. (1971) Phylogeny and ecology of mycotrophic achlorophyllous angiosperms.Quart. Rev. Biol. 46, 219–25.Google Scholar
  18. Gensel, P. G. and Andrews, H. N. (1984)Plant life in the Devonian. Praeger Publishers, New York, USA.Google Scholar
  19. Gillespie, W. H., Rothwell, G. W. and Scheckler, S. E. (1981) The earliest seeds.Nature 293, 462–4.Google Scholar
  20. Grime, J. P., Hodgson, J. G. and Hunt, R. (1988)Comparative plant ecology: a functional approach to common British species. Unwin Hyman, London, UK.Google Scholar
  21. Haig, D. (1989) Seed size and adaptation.Trends Ecol. Evol. 4, 145.Google Scholar
  22. Haig, D. (1990) Brood reduction and optimal parental investment when offspring differ in quality.Am. Nat. 136, 550–66.Google Scholar
  23. Haig, D. and Westoby, M. (1988a) Sex expression in, homosporous ferns: an evolutionary perspective.Evol. Trends Plants 2, 111–9.Google Scholar
  24. Haig, D. and Westoby, M. (1988b) A model for the origin of heterospory.J. Theor. Biol. 134, 257–72.Google Scholar
  25. Haig, D. and Westoby, M. (1988c) Inclusive fitness, seed resources and maternal care. InPlant Reproductive Ecology. (J. Lovett Doust and L. Lovett Doust, eds), pp. 60–79. Oxford University Press, New York, USA.Google Scholar
  26. Haig, D. and Westoby, M. (1989) Selective forces in the emergence of the seed habit.Biol. J. Linnean. Soc. 38, 215–38.Google Scholar
  27. Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G. and Walters, R. (1982)A Geologic Time Scale. Cambridge University Press, Cambridge, UK.Google Scholar
  28. Harper, J. L., Lovell, P. H. and Moore, K. G. (1970) The shapes and sizes of seeds.Ann. Rev. Ecol. Syst. 1 327–56.Google Scholar
  29. Hickey, L. J. and Doyle, J. A. (1977) Early Cretaceous fossil evidence for angiosperm evolution.Bot. Rev. 43, 3–104.Google Scholar
  30. Hickok, L. G. and Schwartz, O. J. (1986) Anin vitro whole plant selection system: paraquat tolerant mutants in the fernCeratopteris.Theor Appl. Genet. 72, 302–6.Google Scholar
  31. Hodgson, J. G. and Mackey, J. M. L. (1986) The ecological specialization of dicotyledonous families within a local flora: some factors constraining optimization of seed size and their possible evolutionary significance.New Phytol. 104, 497–515.Google Scholar
  32. Hopf, F. A. and Hopf, F. W. (1985) The role of the Allee effect in species packing.Theor. Pop. Biol. 27, 27–50.Google Scholar
  33. Knoll, A. H. (1986) Patterns of change in plant communities through geological time. InCommunity ecology. (J. Diamond and T. J. Case, eds), pp. 126–41. Harper and Rowe, New York, USA.Google Scholar
  34. Koch, L. and Schulz, D. (1975) Über Samen und Samenkeimung derPhalaenopsis Heideperle.Die Orchidee 26, 27–30.Google Scholar
  35. Lidgard, S. and Crane, P. R. (1990) Angiosperm diversification and Cretaceous floristic trends: a comparison of palynofloras and leaf macrofloras.Paleobiology 16, 77–93.Google Scholar
  36. Lloyd, D. G. (1987) Selection of offspring size at independence and other size-versus-number strategies.Am. Nat. 129, 800–17.Google Scholar
  37. Lloyd, D. G. (1988) Benefits and costs of biparental and uniparental reproduction in plants. InThe Evolution of Sex. (R. E. Michod and B. R. Levin, eds), pp. 233–52. Sinauer, Sunderland, USA.Google Scholar
  38. Martin, A. C. and Barkley, W. D. (1961)Seed Identification Manual. University of California Press, Berkeley, USA.Google Scholar
  39. McGinley, M. A. and Charnov, E. L. (1988). Multiple resources and the optimal balance between size and number of offspring.Evol. Ecol. 2, 77–84.Google Scholar
  40. McGinley, M. A., Temme, D. H. and Geber, M. A. (1987) Parental investment in offspring in variable environments: theoretical and empirical considerations.Am. Nat. 130, 370–98.Google Scholar
  41. Mirov, N. T. (1967)The genus Pinus. Ronald Press, New York, USA.Google Scholar
  42. Parker, S. P. (ed.) (1982)Synopsis and Classification of Living Organisms. McGraw-Hill, New York, USA.Google Scholar
  43. Pettitt, J. M. (1970) Heterospory and the origin of the seed habit.Biol. Rev. 45, 401–15.Google Scholar
  44. Phillips, T. L. (1979) Reproduction of heterosporous arborescent lycopods in the Mississippian-Pennsylvanian of Euramerica.Rev. Palaeobot. Palyn. 27, 239–89.Google Scholar
  45. Salisbury, E. J. (1942)The Reproductive Capacity of Plants. Bell and Sons. London, UK.Google Scholar
  46. Silvertown, J. L. (1989) The paradox of seed size and adaptation.Trends Ecol. Evol. 4, 24–6.Google Scholar
  47. Singh, H. (1978)Embryology of Gymnosperms. Borntraeger, Berlin, Germany.Google Scholar
  48. Smith, C. C. and Fretwell, S. D. (1974) The optimal balance between size and number of offspring.Am. Nat. 108, 499–506.Google Scholar
  49. Stebbins, G. L. (1974)Flowering Plants: Evolution Above the Species Level. Harvard University Press, Cambridge, Massachusetts, USA.Google Scholar
  50. Takhtajan, A. (1976) Neoteny and the origin of flowering plants. InOrigin and Early Evolution of Angiosperms. (C. B. Beck, ed.), pp. 207–19. Columbia University Press, New York, USA.Google Scholar
  51. Taylor, T. N. (1988) The origin of land plants: some answers, more questions.Taxon 37, 805–33.Google Scholar
  52. Taylor, T. N. and Archangelsky, S. (1985) The Cretaceous pteridospermsRuflorina andKtalenia, and implications on cupule and carpel evolution.Am. J. Bot. 72, 1842–53.Google Scholar
  53. Temme, D. H. (1986) Seed size variability: a consequence, of variable genetic quality among offspring?Evolution 40, 414–17.Google Scholar
  54. Tiffney, B. H. (1984) Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis.Ann. Missouri Bot. Gard. 71, 551–76.Google Scholar
  55. Tiffney, B. H. (1986) Evolution of seed dispersal syndromes according to the fossil record. InSeed dispersal, (D. R. Murray, ed.), pp. 273–305. Academic Press Australia, Sydney, Australia.Google Scholar
  56. Tryon, A. F. (1986) Stasis, diversity and function in spores based on an electron microscope survey of the Ptieridophyta.Pollen and Spores: Form and Function. (S. Blackmore and I. K. Ferguson, eds), pp. 223–49. Academic Press, London, UK.Google Scholar
  57. Turnau, E. and Karczewska, J. (1987) Size distribution in some Middle Devonian dispersed spores and its bearing on the problem of the evolution of heterospory.Rev. Palaeobot. Palyn. 52, 403–16.Google Scholar

Copyright information

© Chapman and Hall Ltd 1991

Authors and Affiliations

  • David Haig
    • 1
  • Mark Westoby
    • 2
  1. 1.Department of Plant SciencesUniversity of OxfordOxfordUK
  2. 2.School of Biological SciencesMacquarie UniversityAustralia

Personalised recommendations