Advertisement

Journal of Fusion Energy

, Volume 13, Issue 1, pp 45–58 | Cite as

Numerical comparison between the ICF and the ICF-spherical pinch

  • H. B. Chen
  • J. Chen
  • B. Hilko
  • E. Panarella
Article

Abstract

The spherical pinch concept is an outgrowth of the inertial confinement model. The salient feature of the spherical pinch concept is the creation of a hot plasma in the center of a sphere.(1,2) This plasma is then compressed by a strong shock wave launched from the periphery of the vessel by an imploded plasma acting as a driver. This scheme, reveals that convergence of the shock, which is the main feature of all inertial confinement schemes, is a component of the spherical pinch model. The reasons for classifying the spherical pinch as a particular ICF model and designating it as a ICF-SP are given here. The fluid mechanics and high-temperature hydrodynamics of the spherical pinch can be briefly described as an explosion within an implosion. The structure of the shock wave for such explosion within an implosion and for, an implosion alone is determined by solving numerically the governing equations of the phenomena. We present here a detailed computational comparison of the inertial confinement model and the spherical pinch in terms of density, pressure, temperature, confinement time, total accumulated number of neutrons, and time-resolved neutron flux from reactions in deuterium-tritium mixture. It is shown that temperature, confinement time, and total number of neutrons for the ICF-Spherical Pinch improve upon the classical ICF.

Key Words

Inertial confinement fusion spherical pinch shock wave implosion and explosion hightemperature hydrodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Panarella (1980). Quasi-spherical compression of a spark-channel plasma.Can. J. Phys. 58, 7.Google Scholar
  2. 2.
    —Idem (1987). Spherical pinch.J. Fusion Energy 6, 285.Google Scholar
  3. 3.
    J. G. Cordey, R. J. Goldston, and R. R. Parker (1992). Progress toward a tokamak fusion reactor.Phys. Today January.Google Scholar
  4. 4.
    J. D. Lindl, R. L. McCrory, and E. M. Campbell (1992). Progress toward ignition and burn propagation in inerttial confinement fusion.Phys. Today September.Google Scholar
  5. 5.
    W. J. Hogan, R. Bangerter, and G. L. Kulcinski (1992). Energy from inertial fusion.Phys. Today September.Google Scholar
  6. 6.
    B. Ahlborn and M. H. Hey (1981). Scaling laws for laser driven exploding pusher targets.Plasma Phys. 23, 435.Google Scholar
  7. 7.
    G. Velarde, Y. Ronen, and J. M. Martinez-Val (1992).Nuclear Fusion by Inertial Confinement: A Comprehensive Treatise (CRC Press). p. 46.Google Scholar
  8. 8.
    H. Motz (1979).The Physics of Laser Fusion (Academic Press).Google Scholar
  9. 9.
    E. Panarella and P. Savic (1983). Scaling laws for spherical pinch experiments.J. Fusion Energy 3, 199.Google Scholar
  10. 10.
    H. B. Chen, J. Chen, B. Hilko, and E. Panarella (1993). Possible Instability Mechanism for the ICF-Spherical Pinch, 23rd Annual Anomalous Absorption Conference, Wintergreen, Virginia.Google Scholar
  11. 11.
    S. Glasstone and R. H. Lovberg (1960).Controlled Thermonuclear Reaction: An Introduuction to Theory and Experiment (D. Van Nostrand Company).Google Scholar
  12. 12.
    J. J. Duderstadt and G. A. Moses (1982).Inertial Confinement Fusion (John Wiley & Sons).Google Scholar
  13. 13.
    K. A. Brueckner and S. Jorna (1974). Laser-driven fusion.Rev. Modern Phys. 46, 325–367.Google Scholar
  14. 14.
    L. Spitzer, Jr. (1962).Physics of Fully Ionized Gases, 2nd Ed. (Interscience Publishers).Google Scholar
  15. 15.
    Ya. B. Zel'dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze (1985).The Mathematical Theory of Combustion and Explosions (Consultants Bureau), p. 550.Google Scholar
  16. 16.
    A. K. Oppenheim (1973). Experiments in gasdynamics of explosions.Annu. Rev. Fluid Mech. 5.Google Scholar
  17. 17.
    L. D. Landau and E. M. Lifshitz (1966).Fluid Mechanics (Academic Press), p. 392 (Pergamon Press, 1959).Google Scholar
  18. 18.
    Ya. B. Zel'dovich and Yu. P. Raizer (1966).Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press), p. 794.Google Scholar
  19. 19.
    J. H. Gardner, D. L. Book, and I. B. Bernstein (1982). Stability of imploding shocks in the CCW approximation.J. Fluid Mech. 114, 41.Google Scholar
  20. 20.
    C. Richard De Vore and E. S. Oran (1992). The stability of imploding detonations in the geometrical shock dynamics (CCW) model.Phys. Fluids A 4, 835.Google Scholar
  21. 21.
    K. Takayama, H. Kleine, and H. Grönig (1987). An experimental investigation of the stability of converging cylindrical shock waves in air.Exp. Fluids 5, 315.Google Scholar
  22. 22.
    E. G. Gamaly (1992). Hydrodynamic instability of target implosion in ICF, inNuclear Fusion by Inertial Confinement: A Comprehensive Treatise, G. Velarde, Y. Ronen, and J. M. Martínez-Val, eds. (CRC Press), p. 321.Google Scholar
  23. 23.
    S. Chandrasekhar (1961).Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford).Google Scholar
  24. 24.
    David L. Book (1986). Rayleigh-Taylor instability in compressible media, inEncyclopedia of Fluid Mechanics, N. P. Cheremisinoff, ed. (Gulf Publishing Company).Google Scholar
  25. 25.
    H. B. Chen. Instability in ICF and ICF-SP, Advanced Laser and Fusion Technology, Inc. Report, October 1993.Google Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • H. B. Chen
    • 1
  • J. Chen
    • 1
  • B. Hilko
    • 1
  • E. Panarella
    • 2
  1. 1.Advanced Laser and Fusion Technology, Inc.HullCanada
  2. 2.Department of Electrical and Computer EngineeringUniversity of TennesseeKnoxville

Personalised recommendations